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PREFACE
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Aeronautical Laboratories under Project 2304, Task 2304N1, and
Program Element 61102F.

The work was performed during the period March 1983 to
September 1985. Dr. Karl G. Guderley of the University of Dayton
Research Institute was Principal Investigator. Dr. Charles L.

Keller, AFWAL/FIBRC, (513) 255-7384, Wright-Patterson Air Force
Base, Ohio, was Program Manager.

The author would like to express his appreciation for the

excellent typlng work of Ms. Carolyn Gran and Ms. Robin Stritenberger.
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SECTION 1
INTRODUCTION

The present report gives a version of linearized airfoil
theory for subsonic oscillatory flows which avoids the frequently-
used idea of concentrating the pressures into lines or points. As
usual, the linearized flow differential equation is solved by
means of fundamental solutions. The boundary conditions at the
planform then are expressed by an integral equation. In this
report, the acceleration potential is used. It has the advantage
of giving directly, without differentiations, the pressure
distributions. Consequently, the Kutta condition expresses itself
very simply by the postulate that there is no pressure difference
between the upper and lower side of the wing. However, the
singularities which occur in the governing integral equation are
very strong and this causes conceptual and practical
difficulties.

For numerical purposes, one always expresses the pressure
distribution in terms of a finite number of parameters. In the
vortex lattice method (which can be viewed as a discretization of
the integral equation formulation) the pressures are concentrated
into lines along which the force per unit of length is piece-wise
constant. For such lines (and the pertinent trailing vortices),
the upwash can be computed by the Biot-Savart law. Dowell and
Ueda (Refs. 1,2), on the other hand, concentrate the pressures
into "pressure points;" although for points of the wing surface
lying in the wake of the pressure points, this concept must be
modified. Dowell and Ueda do this without further explanation by
reference to Mangler's work (Ref. 3). (It seems to me that
Mangler's approach is applicable only if for the upwash at points
of the wake one replaces the point force by a line force, or
alternatively if one averages the upwash along a line in the
wake.) To express the boundary conditions at the plan form, one
usually matches at a sufficient number of "control" points, the
upwash expressed in terms of the pressure parameters and the
upwash given by .he boundary conditions. One then obtains a
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;; linear system (with a full matrix) from which the pressure
parameters are determined.

! The upwash field obtained from the pressure field is by no

: means smooth. The choice of control points therefore introduces

; an element of arbitrariness. Nevertheless, these methods are
successful, although perhaps not overly accurate.

; In the present study, the author reduces the arbitrariness

3 caused by the concept of pressure points or pressure lines and by
the choice of control points. (Some arbitrariness is inherent in

' any discretization.) Within surface elements (preferably

? triangles), an expression closely related to the pressure is

i approximated by linear functions. The pressure is continuous as

N one proceeds from one element to its neighbors. In a cruder form,

one may also use constant pressure elements. (Even in the latter
case, the wake has only logarithmic singularities if no side of
the (polygonal) element is parallel to the wake streamlines.) The
arbitrariness due to choice of the control points is avoided by
matching the upwash velocities in the average over control areas
(which include lines along which the flow field is singular).
While this is conceptually satisfactory, it complicates the
procedure since it requires further integrations. For control
areas at a distance from the pressure areas and their wakes, the
functions to be integrated are smooth. The integration can then
be carried out numerically, for instance, by (low order) Gaussian
integration. The results are rather close to those obtained with
the idea of pressure and control points. (This is the reason for
the success of the method of Ueda and Dowell.) In the vicinity of
: the pressure element, or of its wake, it is preferable to
determine the part of the upwash in which singularities occur
analytically. One then uses a mixed numerical analytical method.
This works well for control areas close to the wake of the

pressure element but at some distance from the pressure area.

If the control element is close to the pressure element, a
corresponding splitting of the upwash is possible in principle.
But then even the "smooth" function to be integrated proves to be
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rather intractable for numerical integration methods.
Fortunately, all necessary integrations can be carried out Yy
analytically in terms of elementary transcedental functions. This
is possible because of several factors: (1) Ueda has provided a
development of the kernel of the integral equation with respect to
the reduced frequency. If the elements are close to each other,
only the terms of the lowest order, which are relatively simple,
are of importance. (2) If the wing surface is subdivided into
triangles, then it is possible to represent the pressure
distribution (roughly speaking) by linear functions which are
continuous, and at the same time, allow one to carry out the
necessary integrations. (3) The choice of the coordinate systems
is important. To obtain the upwash at a point (x,y) one uses
coordinates which have this point as origin. One of the two
integrations over the pressure element is then trivial. For the
integration over the control elements, one uses as origins the

P

corner points of the pressure elements with a similar effect.

The basic equations and the formulae of Ueda (with some
extension) are derived in Appendix A and B. The integral equation
{ directly written for the plane of the wing is meaningless. The .f.i
author found it preferable to go back to the original meaning and
include the limiting process in which one approaches the plane of N
the wing from above or beiow. Mostly, but not always, one obtains
the same result as in the usual less cautious approach. Integra- o
tion formulae needed for the determination of the upwash and later gﬁ&
for the averaging over the control area are first derived for ;i"
distant points close to the wake and later for cases where
pressure elements and control elements are close to each other.

The complexity of the resulting formulae has given the

author some uneasiness because of the danger of errors. The .
| analytical procedure is shown in sufficient detail so that the oy
, ANy
k reader will be able to check the results himself. b?:
| A survey of essential ideas and a listing of the formulae :i?“
' c".-

needed in the computation is found in Section VIII.

R P S

DR .. & et e e T Tt S Tt . - . R . . N
Y SURPARR N C AL KA A et R AT S S S S L B T I S O e Cae
AT RIS




e M A e S S S et Bl e Jsk i S e i G 2 AU AR GRS R i B A A A e S A S AN AN p Tl e S 4 e T Tk ek B B N

S Wt e . D S N
K - A SNSRIV T

LR

SECTION II
BASIC EQUATIONS

Let x,y,z be a system of Cartesian coordinates. We consider
the subsonic oscillatory flow over a wing in a linearized
approach. The plane of the wing is given by z = 0. Coordinates
within the wing planform corresponding to x and y are £ and 1
respectively. The free stream velocity is U, the free stream Mach
number M, and the free stream density p. All lengths are made
dimensionless with a characteristic length L. The time dependence
of the oscillatory motion is given by the factor exp(ivt), where t
is the time. The dimensionless frequency is k = vL/U. The
deviation of the pressure from the free stream pressure is made
dimensionless with p U2/2 and denoted by p. The dimensionless
pressure difference between the lower and upper sides of the wing
is denoted by Ap. The dimensionless upwash at a point x,y,z is
denoted by w. The upwash at a point X,y,z expressed in terms of
the pressure difference is given by

W(%,7,2) =~ 8m)7 " & (3 [[ 8p(E,MIR(E-,F,k)aEdn] (1)
A

The region of integration is the wing area A. K is given by the
classical formula

—_—(

= = = = = =1\ |[Mexp(ikV) exp(ikv) ~
K(g"x.f‘,k) - eXP(ik(g-x)) P ) + - . dav (2)
R(12e22)172 T 0 “L’(Vzw_z)?—z

with
~ =~ =2
= (n-y)2 + 2z

82 - [(x-0)2 + %82 (3)

<t

= (1-M%) "1 (-(g-x)-MR)
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B = (1-M%)1/2

A derivation is found in Appendix A. We introduce the
Prandtl Glauert transformation

-1

Q(X.B_1Y9B z) wix,y,z)

-1

Ap(E,B” 'n) = Ap(E,n) (4)

-1 K(g~x,r,k)

8 1k(g-x,8" e, k)

2 o (ney)? e 22

[ -3
N

wix,y,z) = (8m)"" (z [[ Ap(E,mK(g-x,r,k)dEdn) (5)

A

The power series development with respect to the reduced frequency

k of K, Eq. (2), has been derived by Ueda. (The result is by no
means obvious, because the integrals which arise if one develops
the integrand of Eq. (2) with respect to k do not converge.) In
Appendix B these formulae have been rederived. Simplifications
which are rather important for the present approach arise if one
partially combines the two terms on the right of Eq. (2). The
form used here is given in Eqs. (B.63, B.6l4, and B.65).
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The pressure difference Ap is found from an integral
equation, obtained from Eq. (5) by making the limiting process z+0
on the right and by substituting on the left the upwash
which, of course, is known over the wing. Because of the
singularity of K the evaluation of the right-hand side involves a
limiting process which is not trivial except for points (x,y) at
some distance from the point (g,n) and its wake. It is true one

obtains ultimately lim =—(z II..) = lim II ..., except for one
z+0 az z+0
important exception which justifies the cautious approach taken in

this report. A reference to the work of Mangler (Ref. 4) does not
seem to be sufficient.

In the approach taken here the wing planform is divided
into elements and within each element the (unknown) pressure is
approximated by a linear combination of shape functions. The
coefficients by which the shape functions are multiplied are the
pressure parameters so far unknown. The upwash distribution is
expressed in terms of these parameters. Usually a system of
equations for these parameters is obtained by equating the upwash
at certain points, called upwash points or control points, with
the upwash given by the boundary conditions. The upwash
pertaining to the chosen pressure distribution is by no means
smooth. At the element boundaries and certain lines of the wake
pertaining to a pressure element it goes logarithmically to
infinity; for constant pressure elements it even behaves as d-1
where d is the distance from the boundary. One chooses the
control points at a distance from these singularities, but in any
case, the results will be rather inaccurate (except of course if
the points (x,y) are at some distance from the point (£,n) and its
wake).

In this report we equate the integrals over the given
downwash over certain areas of the wing with the same integral
over the downwash expressed in terms of the parameters for the
pressures, These areas will be called control areas.

As the work progressed it became more and more apparent that
analytical integrations would play an important role. The kernel
of the integral equation is accompanied by a factor
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exp ik(g-x). We set
Ap(E,n) = Ap(g,n)exp(ikEg) (6)

This is one of the steﬁs which make an analytical integration
feasible. Moreover, we introduce a weight function exp(ikx) in
the integrals for the upwash. Since the reduced frequency is not
large, exp(ikg) and exp(ikx) vary only by a small amount within an
element; or even within the pressure and control areas.

During the course of the work the author's idea about the
choice of the pressure and of the control elements have undergone
changes. First he had a subdivision of the planform in mind which
is'suggested by the vortex-lattice method, and which has been used
in the work of Ueda and Dowell (Fig. 1). Then he realized that
for such trapezolidal elements it is not possible to find elemental
pressure shape functions which satisfy the two requirements that

the pressures be continuous as one passes from one element to the
next and that the resulting integrals can be integrated
analytically. Triangular elements with linear shape functions for
Ap(E,n) are preferable. Such elements can be obtained by drawing
one diagonal into the trapezoids of Fig. 1 (see Fig. 2).

In the triangles in Fig. 2 one side is parallel to the x-
axis (to the direction of the wake streamlnes). Consider a single
element and assume that AB(E,n) is constant (Fig. 3a). Then one
obtains at the wake boundary n = ng a singularity in the upwash as

(n3-y)-1, at the element boundary and at n = n, a singularity as

log(n1-y). In contrast, if none of the sides of the triangle is

DA e
l{"“, .t .

parallel to the x-axis, then one obtains in the wake three ?i ]

. VT

singular lines n = Nys N = Ny, and n = n3 but only with :?¥$
Wt

logarithmic singularities, 1In other words, one obtains a smoother
upwash although infinities are still present. This is of
particular interest if one works with elements of constant AB. If
the pressure elements have sides parallel to the x-axis, then the
control elements must overlap lines of the wake pertaining to the
x-axis, otherwise integrals over the upwash will be infinite. For
pressure elements with no side parallel to the x-axis this is not
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necessary, as the logarithmic infinities give a contribution which
remains finite after the integration. Incidentally, for constant
pressure elements one can use for the elemental areas quadrangles
as well as triangles. Such an elemental subdivision is shown in
Fig. 4. (Special measures may be needed at the wing tips and at
the center line.) A subdivision in triangles is obtained by
drawing into the quadrangles the diagonal which is not parallel to
the x-axis. Originally, the author thought it desirable to choose
the quadrangles or the triangles so that their corners lie on
lines of constant y but actually the integration formulae are of a
nature that a proliferation of singular lines in the wake causes
no additional computational labor.

The numerical work turns out to be quite complicated. It
would be greatly simplified if one could use a subdivision into
elements which possess a repetitive pattern. For wing plan forms
with parallel leading and trailing edges this can easily be
achieved (Fig. 5). Here one has only two types of elements (see
Fig. 5a) and it suffices if one establishes only once for each
type the necessary integrals over the combinations of one pressure
element and close upwash elements. If the trailing edge is not
parallel to the leading edge and one uses these subdivisions, then
one must admit exceptional elements at the trailing edge (see
Fig. 6).

For straight leading and trailing edges one can obtain a
subdivision which at least has self-similarity (Fig. 7). Let a
and b be the chords of the wing at its root and at the tip,
respectively. The net of element boundaries to be drawn is
self-similar with respect to the point of intersection of leading
and trailing edges (point 0). First we choose the cornerpoints of
the net that lie on the leading edge. The distances from point O
are chosen in such a manner that each point is mapped into the
next one closer to 0 if one multiplies the scale of the figure by
a factor r < 1. 1If there are n + 1 points along the leading edge
(including the points at the wing root and at the wing tip), then
one needs n such transformations to transform the wing root a into
the wing tip b. Therefore,
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r = (b/a)“n

If S is the wing span (measured in the y-direction) then point 0
lies at a distance
-1

S1 = S a(a-b)

The distance of the mth point along the leading edge from point O,

(if one counts from the root outward and assigns m = 0 to the
root} is then

It gives some simplification if the sides of the elements arrange
themselves in straight lines. The individual triangular elements
are then embedded in larger triangles. Such a net is obtained in
the following manner. First one chooses one of these larger
triangles with two corners at the points of the leading edge
determined above and one corner at the trailing edge. Next one
draws straight lines parallel to the sides of these triangles
through all those points of the leading edge (including some
outside of the wing). This divides the plan form into
quadrangles. Because of the choice of the initial points at the
leading edge one set of diagonals in these quadrangles form
straight lines through point 0. By drawing these diagonals one
obtains the desires self-similar net. 1In general, the other
diagonals will not form a straight line and, therefore, the
cornerpoints lying on a tract of these diagonals will not form a
line y = const. Of course if one of the sides of the original
large triangle is line y = const, then all triangles will have
such a side. For elements of constant AB this complicates the
choice of upwash areas. This does not happen for elements in

which Ap is linear.

The parameter describing the pressure distribution are the
values of Ap(E,n) = Ap(g,n)exp(ikE) at the corners of the grid
formed by element boundaries. One parameter therefore generates
pressure distributions in all elcments that contain the corner
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which pertains to the parameter whose influence one wants to "
compute. The region covered by the elements pertaining to a o~
certain pressure parameter will be called the pressure area. In ’Q'
the interior such an area consists of six triangular elements (see E:
Fig. 8). The integration of the upwash (with a weight function E?
exp(ikx) is carried out over "upwash areas." They are identical N
with the pressure areas. This ensures that the number of !5
equations equals the number of unknowns. The elements of the o
matrix of the system for the determination of the pressure :
distribution are given by the upwash due to the pressure in an
individual pressure area (with the value 1 assigned to the
pertinent pressure parameter) integrated over the upwash areas. Eﬁ
(This is, of course, nothing new, the idea is inherent in all Zfﬁ
methods.) Each element belongs to several pressure and upwash :j
areas. To each triangular element belong three "elemental" ‘ﬁ
pressure distributions., The primary task is the determination of ﬁk
the upwash due to the elemental pressure distribution integrated 'ff
over the different elements. ;i
For elements with constant AB, in which no side is parallel ﬁﬁ
to the x-axis, the elements themselves can be used as pressure and ﬁé
upwash areas. If element sides are parallel to the x-axis and AB ;f
is constant, then the elements still constitute the pressure E?
areas, but the upwash areas must be chosen so that one has an
overlap of the singular lines within the wake; this is necessary
in order to avoid infinities in the integrated upwash. y
Let N be the number of pressure parameters. It is the . }Q
number of corners in the grid at which the pressure is unknown, i
i.e., the number of grid corners except for those at the trailing :
edge where the pressure difference is zero. It is also the number :
of pressure and of upwash areas. The pressure parameters (each :E;
with a pertinent pressure area) and also the upwash areas are 'lL
N numbered from 1 to N. Ultimately, one will generate an N2 matrix. :g‘
™ Further numberings are introduced for the elements and for the $§
& elemental pressure distributions. The number of elemental §:
pressure distributions is somewhat smaller than three times the :
number of elements, because the pressures at the trailing edge are 8?1
N
10 N

2hs

........ -
-, e

LS LR R SN R S S \.."_'-_‘.. .. . PN PRI I Ca et s
e e T e e e S N S N AR OSSN




A aHE ale SR R P LR N 2 SN Aol "Dt

zero. The numberings of the pressure areas and of the upwash
areas are the same. The numberings of the elemental pressure
distributions and of the upwash elements (with single subscripts)
are carried out independently. Let NE be the number of upwash
elements and NP the number of elemental pressure distributions.
Which elemental pressure distributions belong to certain pressure
areas and which elements belong to the upwash areas is shown by
"housekeeping" matrices M(1) and M(3) of dimension NP by N and N
by NE' respectively. The elements of these matrices are zero and
one. An element Mil) is one if the elemental pressure distribu-
bution with index k pertains to the pressure area with index 1.
Each row of M(1) contains only a single one, each column a maximum
of six. The element M§3) is one if the elements with index J
belong to the upwash area with index i.

An element Mgzi of a third matrix M
9

integrated over the element with index j due to the elemental
pressure distribution with index k. The matrix for the system of
equations from which the pressure parameters are determined is
denoted by M. One has

(2)gives the upwash

w o u(3 Ry 1)
The main effort is the determination of the matrix M(z). An
element in which the pressure is prescribed will be called gn-
element (because of the independent variables for the pressure),
and an element over which the upwash is integrated will be called
xy-element. 1In Section III formulae will be developed for
elements of M(Z) for which the xy-element is at some distance from
the En-element. In subsequent sections xy-elements close to &En-

elements will be treated.

1
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SECTION ITI

EVALUATION OF THE ELEMENTS OF THE MATRIX M(2)
xy-ELEMENTS AT A DISTANCE FROM A gn-ELEMENT

FOR

The computation is based on Eq. (5). The z-coordinate
appears only in the variable r. One has

3N

3 _z3
9z ar

If the xy~element is not adjacent to the &n-element or its wake,

¥ then the function K is free of singularities. One has
3 (2K) - K + (2°/r)(9K/or) (8)
and
lim (%E(ZK)) = 1lim K (9)
240 z+0

One simply replaces |r| by |n-y|. This is the approach used
without restriction in Reference 2.

The specific form of K is found in Appendix B.

K = 87" exp(ik(£-x)) (K, + Ky)

No wake singularities occur in K2. The wake singularities
occurring in K, are displayed in Eq. (B.64a).

We have introduced in Eq. (6)

Ap (g,n) = exp(ikE)Ap(E,n)

12
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Eq. (5) will be discretized by postulating

B8w II exp(ikx)w(x,y)dxdy
Ai(x.y)
(10)

-}

- [[  umidzz [[  8B(E,n)(K, + K,)dEdn}axay
A (x,y) 20 A (E,m)

Here A,{(x,y) and Az(g,n) refer respectively to the ith upwash and
the lt pressure area. For a triangular element with corners
numbered j, k, & and pressure 1 at corner j, and pressure 0 at

corner k and &, the linear pressure shape function is given by

(8-E ) (&, -€,)

_ |(n-n ) (“k'“z)
Ap (g,n) = 1 + k";? (51‘5377 (11)

(nk-nj) (nz—nj)

This is easily verified by simple operations on determinants if
one sets § = Ek. n = Nyer and g = 51' n=n. The matrix elements
Mgi) is obtained by replacing in Eq. (10) Ai(x,y) and Al(i.n)

respectively by the ith and the zth surface elements.

If the xy-element is not adjacent to the £n-element or its

wake, then the integrand of Eq. (10) is analytic in €, n, x, and y

and the integrations can be carried out with efficient numerical
methods. There exist even formulae for Gaussian integration over
a triangular area (developed for applications in elasticity).

If the xy-element is close to the wake but at some distance
from the En-element, one proceeds as follows. The function K
(see Eq. (B.6M4a)) is written

1
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(12)
with

w)
< 2,2
% K3 = 28°/r
- - 2n
. 2 (kr/28)

Ky, = kK"log r nzo AT (13)

® 2n
Ky = -8 TR(R-(£-x0)17"-(¥/2)108(2k" (R=(E-00)) | ke/2B) — (1w

r? - (n—y)2 . 22 (15)

The function K2 and Ku are analytic even in the wake. Their
contributions can again be treated by Gaussian integration.
K3 = K3l + K32 depends upon r only. For the evaluation of this
part one divides both the En-element and the xy-element
respectively by a line n=const and a line y=const into smaller
triangles (see Fig. 9). The contribution of these smaller
triangles are treated separately. Ap is a linear function of £

.a and n

Ap(E,n) = Co * Cy &+ Cym (16)

Consider a fixed En and a fixed xy triangle. Assign the index 1
to the corner opposite to the side parallel to the £-axis, and

i subscripts 2 and 3 to the other corners (proceeding in
r counterclockwise direction), Figs. 10. We write

;

E ap = Cy + €, (g-g,) + Cy(n-ny) (17)
v

N

.J

C4

’_J
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: here

f Co = Co * Cqy & * Comy

R

The sides here 1 2 and 1 3 of the triangle are given respectively

A

}

. E,-E,

g E-& =3 =, (n-n;)

F and

r £ ‘51

- 3 -
13 51-n—3-:-ﬁ;-(nn1)

Then one can carry out the integration over £ at constant n, and
the integrations over x at constant y. Let, for Fig. (10a)

f,(y) - :(y-y1)(x2-x3)/(y2-y1) (18)

£(m) = {LE + Ty(n=n)1(n=n)(E,=65)/ (ny=ny)
(19)
2 2
(nz-n1)2

+ (61/2)(n-n1

The upper and lover signs hold for Figs. 10(a) and 10(b),
respectively. There are three elemental pressure distributions
f AB(E.n) in each element, and therefore three different sets of
. constants 51, and three different functions f2(n). They are

quadratic in n.
be the integral on the right of Eq. (10) with

e 4U0EB w . s .

Let 131
‘ K1 + K2 replaced by K31. If the triangles in the x,y-plane and
. in the g£,n-plane have the orientations of Fig. 10(a), one has
’
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Y3 3 fa(n)

I = £, (y)
2 | W[ 5
Y, n, (n-y)< + z

dn dy

¥y and y3 need not be the same as n, and n3 because the x,y-
element need not lie in the wake of the En-element. The inner
integration is, of course, carried out at constant y. We write

£,(n) = £,(y) + £3(y)(n=y) + £3(n,y)(n-y)° (20)

£(n,y) = [£,(n) = £,(3) - £3(y)(n=y)1/(n-y)*

The function f
in the form

3(n.y) is analytic at y = n. Then I31 appears

131

I 2 3 £ (y)f(y) 3 dn d
311 = 87 [ f || i
Z

2
Y, n (n-y)= +

2 73 "
I34p = 8% [ £ (n)f3(y) ;
Yy n, (n=y)= + 2z

? (n-y)dn dy
2

M b 42 BN

y n
3 3 ) £5(n)
1313 - j f1(Y) I r3(an)dn - Z (n-y)z . 2

% dn |dy

RPRIN | DR




It is shown in Appendix D that lim %E (...) applied to the second

z-0
term in the bracket of I313 is zero. The first term is

independent of z. Thus,

Y3 N3
)
iig 3 (zJ313) - [ £,y I f3(n,y)dn dy
Y«‘ n1

The integrands are analytic functions.

The inner integration in I311 is carried out analytically.

n3 n3
dn 1 n-y
—_— =3 arctg
n, (n-y)~ + 2z z z n (25)
1
One then has to evaluate
) 1 n- n-y
lim z =[arctg 22¥ ] | = 1im -
240 2z %z z 240 (n-y)? . 22
(26)
1 1
- +
n3‘y r...-y

This result could have been obtained by setting z = 0 on the left
side of Eq. (25), and substituting into the formal expression for

the indefinite integral (namely -n—1) the limits n, and UEY this,
in spite of the fact that the integral obtained by immediately

setting z = 0 does not exist for n = 0. Then

y
3
) 2 T 1
lim = (z 1311) - 8 J £,(9)f,(y) =7t ny dy
z+0 Y, 3 1
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B The integrand is singular for y = Ny and y = n,. If the xy- Bg
-: element lies exactly in the wake of the En-element, then Ny = Yy 5;
. n3 = y3; the integrand is singular at the two limits. If the xy- Eﬂ
. oA
0 element is adjacent to the wake, then this happens at only one Nt
) limit. The two singular terms are now treated separately. Eﬁ
! Y3 £ (y)f,(y) Y3 S
- S 2 T gy - - £ (ny)f,(ny) | d i
n3-y 177377273 n3-y e
y‘] y1 '-'

(26a) 4
- o
. y - -
g ﬂ3‘y ¥ t"

: Y4 .

e
< The second term on the right is a smooth function. 1It, therefore, e
3 can be integrated numerically without difficulty. It is best to }ﬁa
N write it in the form 2;
: 3
Y3 [£,(y) - £,(ny) £,(y) - £,(ny) EN
- [ [2 L3 e (y) + 2 2-3" ¢ (ny)|ay s
ny-y 2 N3y 173 RS

¢
«“a"s"

Yy

» -
.
e ¥y

% P

The first term on the right of Eq. (26a) gives

N3°Y3

£,(n3)¢,(n;) log |n3_y1

»
4

s . N

. -r ',
e
L J A I
LA 23 N R

; This term {s infinite if y3 = n3. This happens because at the A
element boundaries the upwash caused by the En-element behaves as §$
(n3-y)-1. If Ap is continuous as one passes over the element ‘%p

boundaries in the n-direction (as it happens for the two
boundaries between the smaller triangles in Fig. 9 or for the
- triangular elements with one side parallel to the gE-axis and
linear pressure distributions), then the singular term is canceled
by a contribution of the adjacent En-element.
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We have

l
lim 3z (z 1311)

z-+0
2 n3-Y3 - n1 -Y3
B ;f1(n3)f2(n3)log Ra Ty £,(n)f,(n;)10g "o
_ Y3 t1(Y)f2(y) - f1(n3)f2(n3) v+ Y3 f1(Y)f2(Y) - f1(ﬂ1)f2(ﬂ1) dy
b I n3-y y n1-y
27)
The inner integral of 1312 gives
3
% log((n-y)2 + z2)
M
One has
2 n3
) 2
(1/2)1im & (z log((n-y)2 + z ))l
z2+0 oz
™
3 3 n
2 2 z2 3
- 1im[(1/2)108((n-y)2 + 22) | + F—— | | - ro8in-vi
z+0 n (n-y)~ + z n n
1 1 1

This result would have been obtained, if one sets in Eq. (23)
Z = 0, disregards the singularity of the integrand, integrates
analytically, and substitutes the limits.

19




Yo
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y
3
] 2 ' _ - _
iig 3E(zJ312) - 8 I f1(y)f2(y)tlog(n3 y) - log(n,-y)ldy (28)
Yy

The integrand i{s singular for y = n3 and y = n, . We introduce

y
£y, (y) = ] £, (V)3 (v)dv (29)

Yo
The first term of Eq. (28) can then be written (for q fixed)

y
3
[" & [ry(y) - £,(@)l0g(ng-y)ay

¥y

13 Y3 (09 - £,(a))

- (£y(y) - £(a))1og(ny-y) + I dy

MLy
3
Yo ¥

If n3 lies within the interval of integration, one chooses q = n3.
This ensures that (f3(y) - f3(q)/(n3-y) is an analytic function of
y, even at y = n3. If n3 lies outside of this region, then the
integrand is analytic in any case. It is, however, still
advisable to choose the constant fu(q) so that the integrand is as
smooth as possible, but it is not necessary that one evaluate Eq.
(29) for values of y outside of y, <y < y3» or if one does, it
need not be done with precision. Therefore,




y
3 y -
. 3 fu(y) ru(n3) dn
I n3-y

I, = B2(£,(y) = £,(n3))108(n;-y)

(31)
y
3 v .
3 f,(y) - f,(n;) 3
- (£y(y) - fy(ny)log(n,-y) I - I A oy A1 an m

3
R

S
A,

e
"vlh

. Let 132 be the integral 1 with K replaced by K32, Eq. (14). We
omit a demonstration which would show that

T, ..
R e
W

z"
f.‘.‘_ .,

s

9
—(2I,,) = 1im I
az 27327 T L0 132

lim(
z+0

)
. M l.l'.
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Let

° 2n
(k(n-y)/28)
ngo n!i(n+1)! (32)

fs(n-y) -
Then

y

3 N3
iig 132 - K2 I f1(y)( j 108(n-Y)fs(n-y)fz(n)dﬁ>dy (33)
Yy Ny

Let

»

& b

v=n
fe(n,y) = I £,(V)fg(v-y)av (34)

V=Y

v e s
AR

FIASS '.‘ ‘-"'v.‘

The inner integral then becomes

o
LAL A

n-n3

n
3

j log|n-y|(af /an)dn = (log|n-y|f (n,y) - £, (y) (35)
n, n=n,
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with

¥l o

n
3 f6(n.y)

20 = [ w5
4

dn (36)

2&?

The integrand in the last expression is a smooth function of n

3

which can be treated numerically. .?j
For the evaluation of I;,, Eq. (33), one then needs By

Y3
-0r2) [0 (ey (37) o5
and K
'3 o
k2/2 I r1(y)[log|n3~y|f6(n3.y) - log|ny-¥|fg(ny,y)]1dy (38) ;E
y1 '-‘t:;
K
The integrand of Eq. (37) is smooth. The two terms in the bracket ;3;
of the integrand in Eq. (38) are treated separately. Let %?3
AL

-

y o~
fgly,ng) = I £,(¥)fe(ng,v)dv (39) :ii
Yo -

o

Then one obtains instead of the first of these two terms

R 4

'3
f %E [fg(y.ng) - fgla,n3)1log|ny-y|dy iid
Y1

(40) e
3 Ty

- 108'n3°er.f8(y.n3'f8(q’n3) - f9(ﬂ3)

VL
¥, K
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| where

Y3 fo(n,n,) - fo(Q,n,)
g3 L i |
fg(ng) = I yms

¥y

dy (41)

1r Yy < n3 < y3. one wWill choose q = n3. Then the integrand of

Eq. (41) is an analytic function, even at y = n3. If n3 is

outside of this region then the integrand of Eq. (41) is analytic
) for any choice of q in the constant f7(q,n3), but one will choose

q approximately equal to n3 to obtain a smooth integrand of

Eq. (41) in the interval of integration. The same procedure is

applied to the other term, with n3 replaced by n,.

Then

2 3
132 = (k“/2) -’j f1(y)f7(y)dy

Yy

Y3

+ Log(ng=y)[fg(y,ny) = fgla,nd] | - £5(ny) (42)
Y4
Y3

+ fg(n1):

- 108(“1’Y)[f8(Yon1) - fs(q:n1)]
¥

For triangular elements the functions f, and f, (Eqs. (19))
are given by

£.(yayy00q) = e (y-yy)
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The constants Cyr Cyo and c3 are the only parameters by which the
elemental pressure distributions enter the computations. It is
therefore practical to program their contributions to the
following expressions separately then

and
I = ¢c,c,(y.~y )2/2
313 17373 71

One has

(£,(NE,(¥) = £,V (v=y)

- [(t‘1(y) - £, (v))/(v-y)1f,(y) # (e, (y) = £,5,(v))/(v-y)]f, (V)
- ‘c,ﬂcz(y-rﬁ) + <:3(:r-n,)2 + (v-y e, + 03(y-n1 + v-n 1}
Then

[(E 2,0 = £ (OF, N (v-y)ay

- -c,e,l(v-y), (y=n,) + (y-n,)%/2]
~eye3L(v=y, (v=n) (y-ny) = ((v=y;)(y-n2%/2) + (y=n)3/3)

In the program this is considered as a function of y, v, Yi0 My
(c,cz), and (0103). The expression occurring in Eq. (26a) are
then obtained by substituting y3 or y, and n; or n, for y and v
respectively. The lower limit in the integral for fu does not
matter.

The integrand in fu is given by

cl(v-y1)[e2 + 2c3 (v-y1 R 2 n1)]
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Then
£.(y) = ey L(y-y1)2/2) + 2¢,cal((y1-ny) (y-¥,)272) + ((y-y1)°/3)]
y 1%2 1 1¢3 1" MY Y=y,
programmed as a function of y, Yy Mo (c102), and (c1c3).
j(fu(y) - f“(v))(v-y)-1dy = -(eye,/2)[(v-y ) (y-y;) + (y-y1)2/2)]
meyegllyy=n ) ((v=y ) (y-yy) + (y-y1)2/2) + (2/3)(v-n1)2(y-y1)
2 3
+ (1/3)(v-y ) (y-yq) " + (2/9)(y-y1) ]

programmed as a function of y, v, Yis Mo (c1c2). and (c1c3). The
integral on the right of Eq. (30) is then obtained by substituting
y3 and Yy for y, and n3 for v. The same procedure is carried out
for the second term in the integral on the right of Eq. (28); one
simply replaces n3 by nye.

The terms of I32 are 0(k2), moreover n-y is small because
these computations will be carried out only if the xy-elements are
in the vicinity of the wake of the En-element. Therefore, an
approximation of f5 by its first term will suffice

feo =1

5

Then

van
feln,y) = I f,(v)dv

Vey

- (ep/2)(n=n? = (y=n?) + (eg/D(n=n)? = (y=n D)

For the evaluation of f8 this expression is reordered in powers of
(y-y,)
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v fe(n,y) = (02/2)[(n-n,)2 - (y,-n1)2 = 2(yy-ny) (y-yy) - (Y'¥1)2]

2 v (eg/D a3 - (ryon3 - 3002 ey

3 - 3(yy7n) (y-y 2 - ey

For the evaluation of f7 the first form of r6 is used

v
:: 3 1
3 £,(y) = I fe(n,y)(n-y) 'dy
n
1

£,(y) - (c,72)[((ng-n)%/2) + (y=ny)(ng=ny)]
+ (03/3)[((n3-n1)3/3) + ((y-n1)(n3-n1)2/2) + (y-n1)2(n3-n1)]

This is reorderd, in powers of (y-y1)

f7(Y) = (02/2)[((']3-“1)2/2) + (y1'n1)(n3'n1) + (n3“f\1)(Y‘.‘I1)]
+ (eg/3TCng=n)373) + ((yy=ny) (ng=nH272) + (yy=n) % (ngonp)]
+ [((n3-n1)2/2)+ 2(yy=ny ) (ng=ny ) 1(y-yy) + (n3-n1)(y‘y1)2l

Then

y

3
[7 £ @)E50ay = (eq0,/2) {[(Ing-ny)?72)
o y1

+

(¥3-m) (ng=n )y 5=y, )%72 + (ng=ny) (y3y,) 73]
(eye4/3) {L((ng=n)3/3) + ((y=ny) (ng=np)?/2)
(ny=¥)2(ng=ny ) Uy3-¥3)72 + [((ng=ny?/2)

2(y,7ny) (ng=ny)1((y5-¥,)3/3) + (ngonp) ((y=y;) /1))

+

+

+
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Y
- (y-y Y783+ (egey/3) [Lnmn)? - (vy=n )2 3C(y-y)°/2) 3
- 30y,-n20y=y,2373) - 30y, -y Y - -y P75)) R
This is programmed as a function with arguments Y=Yqs NTNgs Y704, »
(c102), and (0103). ::}.i:
Finally, one needs i:'.'-:‘
L3

y o

3f (Y,ﬂ) - f (q,n) e

8 8 S

71 SN
|

but only for n = q. Ultimately, one must substitute q = n3 and ﬁ.-_‘_t'.'
fqo(d.q) = (c,c,/72){l(q- 32 = (g )21 (ya- Y2/
9 1 q 1¢2 q Y1 Y1 fl1 Y3 Y1 .
2 -

+ ((Q'Y1)(Y3"Y1 )/2)] - 2(y1'n1)[((y3-y1 )3/9) + (q-y1)((Y3"y1) /6) .:.:.
Y (q'y12)((y3'y1)/3)] - [((y3—y1)"/16) + (q-y1)((y3-y1)3/12) ~
+ (q-Y1 )2((y—Y1 )2/8) + (Q'Y1)3((Y3'Y1 )/H)]} ‘
S

v (eyeg/3) {Llamny3 - (yy-n3I0Cy3-y2M) + (amyy) Uygmyy)720)) 5
- 30y, -1, 0200(y5-y,)3/9) + (a-y ) ((y3=¥;)%/6) + (a-¥,)°((y57¥,)/3)] 2
- 30y, Ly5m¥,) /16) + (v ((y3-y7)3712) + (a-y)2 (v 5-y)/8) .
y

+ (q~y1)3((y3-y1)/u)] - [((y3—y1)5/25) + (q-y,)((y3-y1) /20) }
+ (q-y, )2((y3'y1)3/15) + (q-y1)3((y3-y1 12/10) + (q-y1)"((y3~y1)/5)]}
e

3

=

&

2

oy

R A e e e S e e N T e A e T N L 4

y
fg(yon) = [ £,(v)fg(n,v)dv
- (eye/) {Tinn)? = (yy-n210y-y?72) = 20y (y-¥7)7/3)
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SECTION IV

THE LIMITING PROCESS z+0 FOR POINTS (x,y)
CLOSE TO OR WITHIN A En-ELEMENT

s

O ey v VY FIVEERW S € Y
RIS o

A more refined procedure is needed for points (x,y) close to
points (g&,n) because certain terms in K have a denominator R,

which tends to zero if (g-x) and (n-y) tend to zero simul-

Z T

2

taneously, and because for £-x negative there are terms with a

Y &V

i denominator r = ((n-y)2 + z2)1/2. The latter singularity has been %i
'. treated in a simpler situation in Section III. 1In the present f
I section we study the 1limit z+0 for the upwash at a fixed point . if
(x,y). i~
According to Eqs. (B.64) cne must evaluate ;ﬂ
3 : 5
- y 3 = .
. w(x,y,z = 0) = ;ig TRE jJ bp(g,n) (K, + K,)dEdn (43) =
. A(eg, n) t-.‘_..
~ where DN
> %?
- wix,y,z) = 8ngexp(ikx)w(x,y,z) ‘
Pﬂ
p
E The function K = K1+ K2 depends only upon gE-x and r with
2 _2.1/2 i
_ £ - ((n-y)? + 29)
j' The independent variable z occurs only in r. Because of the
j singularities in K and because of the differentiation with respect
! to z the result of the limiting process z+0C is not entirely self- .
. evident. For part of the discussion we introduce polar ’ ;ﬁﬂ
S coordinates -
! E-X = pcosa, n~y = psina
; Then o
; R = p% + 2° (44) ol
N
r dgdn =~ pdpda e
v R
:’ 28 "_'.‘-'.,1
¥ ‘~".'1
= ]
b |
k. —
L. l.
lr. B S, L T :
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One deals with integrals

.

gy
P A

JI F(p,a)dpda
Expressing F(p,a) in the form
F(p,a) = 3G(p,a)/aa (45)

one obtains by an argument familiar from the derivation of Green's
theorem

” F(p,a)dpda = “ (3G(p,a)/da)dpda = —.P G(p,a)dp (46)
A A

Alternatively one can set
F(p,a) = 3H(p,a)/3p (47)
Then one obtains

” F(p,a)dpda = ”(aﬂ(p,a)/ap)dpda - )&H(p.a)da (48)
A A

If the point xy lies outside the gn-element, then p # 0
throughout the element, and a returns after one complete circuit
around the element to its original value (Fig. 11). If it lies
inside, then p varies between 0 and p(a), and a between 0 and 2w
(Fig. 12).

For part of the discussion it is convenient to write

P - -
H(p,a) = j F(p,a)dp
0

29
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(where p is a dummy variable of integration). Then

L pla)
jj F(p,a)dpda = j ( j F(B.a)dé)(du/dl))dz
A =0 0

Here £ is the length measured along the contour of the element (or
some other parameter which varies monotomically from O to L). The
value of a along the contour is considered as function of 2.

We start the discussion of the individual terms of K with
K,,» Eq. (B.65). Only the first term, -R [ (exp(ikV) - 1)/V], has
a denominator which tends to zero as p and z tend to zero, namely
R-1. The expression V has the same property, but (exp(ikV) - 1)/V
is obviously regular at V = 0. If any term is critical in the
limiting process z+0, then it is the first one namely -(ik)/R. It

is discussed presently. Except for factors one deals with the

expression
L p(a)

”As(p.a)n“pdpaa - [ (8p(p,a) (p2 + 22) V%0dp) (dasdr)t  (49)
0 p=0

For fixed a the inner integral has the form

2 2.~
I j £(p)(p° + 2%) 1/Zpdp
0
Ultimately one has to form lim (z %; ...) for this expression. By
z+0
an integration by parts one obtains
p(a)
pla) /
I - (p)(p2 + 25172 l - [ wtrap) (07« 2% 24y
0
30
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and
) 2 2.1/2 pie) a) 2 2,1/2
=z (21) = £(p)(p° + 2°) ' - (df/dp)(p” + 2%) dp
0 0
2 2 2.-1/2 ?{#) 5(a) 2 2.-1/2
v Z2[1(p)(p% + 2%) | - | (at/ap) (6 + 277 2ap)
0 0

The limiting process z+0 gives

3 p(a)
lim(5-(zI)) = f(p(a))p(a)) - I (df/dp)pdp
z+0 0

- p(a) _
+ 1im[2%£(p(a))p(a)™! - z£(0) - 22 j (df/7dp)(p2 + 22) V24573
z+0
0

In the first line one carries out an integration by part and
obtains

pl(a)
f f(p)dp
0

The first two terms of the second line vanish for z = 0. In the
last term one has

pla) pa
22 | j (df/dp)(p2 + 22)—1/2dp < 22 max |df/dp | I (p% + 22)—1/2dp
0 0
Now
p(a)
p(a) -
} (92 + 22) 1/2dp - log(p + (p2 . z2)1/2) l
0
31
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The lower limit might be critical; it gives log z. The entire
expression is, however, O(zzlogz).

One thus obtains

p(a) p(a)
lim-%;(% I f‘(p)(o2 + 22)-1/29d€> - I f(pldp
z+0 0 0

Applying this result to Eq. (49) one has

_ -1 L ,p(a) _ - F

Ij Ap(p,a)R pdpda = j ( (Ap(p,a)d%)(da/dl)dl (50) ;?

0 Mp=0 N

5

The results for K1 are less foreseeable. As p-+0, the first o

term of K1 behaves for z = 0 as p_z, moreover, there is a singular Ei
point in the wake of the point (£,n), even for p # O. i
For a fixed point (x,y) the function Ap(&,n) is written in S

the form
:':f-

- m n -

ap(g,m) = 1 1 e (x,¥)(E-x)"(n-y) (51)

mn mn =

obviously -

coo - AB(er)

In practice m < 1, n < 1, but the analysis will be carried out in
more general terms. The individual terms in Eq. (51) will be
treated separately.

The term B2[R(R + £-x)1"| of K, gives a contribution to the
upwash of the form

g2 [ (&=x)"(n-y)"[R(R + £-x)1"dedn (52)
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To this expression we apply the procedure implied by Eq. (45),
(rather than Eq. (47) because the integration with respect to o is
somewhat more easily discussed than the integration with respect
to p). Setting

¢ = a - ™ (53)

(because then an important singularity occurs at ¢ = 0), one
obtains for a single term of the expression in Eq. (51)

I = (-)m+nBZJJ pm’n‘1cos¢m sine”

. mn
A
(5%)
2.\1/2 2 .1/2
1+ (2 ) (1 + 2 - cos¢>]"dpd¢
(- @) =)
The function G of Eq. (45) is then defined by
Glp,¢) = ()™ ™Z™ M 10 Ta(a,4) (55)
with
m n -1
gla,¢) = J cos ¢sin ¢[a - cosal 'dé¢ (56)
and
alz,p) = (1 + (22/p%)172 (57)
One has
a2 -1 = 22/92
(58)

9a/3z = a_p %z

If the point xy lies outside the gn-element, then p > 0 for all
points of the En-element and the denominator p_2 in Eq. (57) is no
matter of concern. If the point xy lies inside the En-element,

33
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then one introduces a cut in the gn-plane in the downstreanm
direction through the point xy. 1In the p¢ plane one then obtains &
the region shown in Fig. 13. The boundaries AB and DE are

respectively lines ¢ = -w and ¢ = + w. Along the contour of the h

\J
element, p is considered as a function of ¢, denoted by p(¢). :'
Along AB and DE, p varies from zero to p(-w) = p(w). i

Y
The expression in Eq. (54) is now evaluated by means of N

Eq. (46). One obtains t
w = g2(-)mr o] lim(% z | pm*nqa']g(aw)dp) (59) 3

z+0 . L

Using the definitions in Eqs. (55) through (57) one has a combined SE
contribution of AB and DE (Fig. 13). -
Y

LY

P(ﬂ) -~

(_)m+n01 82 I pm*n 1 (8(3 n) - 8(3’-7))dp ':::

0 ::::

For n odd the integrand in Eq. (56) is an odd function of ¢, f
therefore, e
o

S

Y

g(a,») - g(a,-x) = 0 , n odd e

>

and one only needs to consider the integral along BCD, which 'g
amounts to the integral around the contour of the region in the ﬁ;
En-plane. N
A,

.{::
In " (-)mnelg2 *‘pm*n'1a-1g(a.¢)dp (60) Fﬁ

The function g(a,¢) is defined in Eq. (56). The variables z and p ;i
enter through the parameter "a," Eq. (57). The integral is formed a:
along the contour of the region. -
To evaluate g(a,¢) (Eq. (56)) we set, for n odd Zi::

o

D

g(a,¢) = g,(a,9) *+ g,(a,¢) (61) o

Y

o

34
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with

- a2 (n-1)/2

J{cos¢ - a]-1sin¢d¢
(62)

g, (a,9) = -j[cosm¢sinn-1¢-am(1 )

(n-1)/2

gz(a,¢) - Iam(1 - a2) [a - cos¢]-1sin¢d¢

In the last equation, Eq. (58) is substituted and the integration
is carried out.

g, - (-)(n=1)/2,m /0y VN10g(a - cosé) (63)

In g, one can carry out the division by (cos¢ - a). One

o
5 &
w
et el

obtains a polynomial in cos¢ with coefficient given by powers of

A A
v e
PR

na, " Notice that .fl
ag1(1.o)/a¢ - cosm¢sinn¢(1 - cos¢)-1 for n > 3, n odd ’}:f

(64) if§3

331(1,¢)/a¢ = (cosm¢ - 10 - cos@)_1sin¢ for n = 1 e

P

- -
. * [
.
.
R
v B
% .

Let g
&2_\:_‘

2

Imn - Imn.1 + Imn'z (65) :'::::E

with o
_ym+n+1 2 m+n-1 -1 . ,;

Imn,i - () 8 ‘}‘p a 81dp’ 1 1,2 :_

‘ : R

To obtain the upwash w, one must form lim —= (zImn), Along the g
z-+0 .:‘.

contour p # 0. In the present case (n odd) one obtains the S
result immediately by setting a = 1. ?Ef
e

L 1 RN

= m+n+l 2 m+n- P

on,1 = (%) 85 [ v g,(1,4) (dp/dr)ds i

£=0




"; where d& is the length element of the contour and L the total
‘S length. Carrying out an integration by parts and using Eq. (64)
one obtains
¢
: L
3 Wgn 1 " (-)™*Ng2(pen)~1 I p™* Peos®esinMe(1 - cos¢) 1 (de/de)ds
»
3 £=0
(66) 3
< n >3, nodd -
7
..—_.4
T
-1 b -1 i
‘ i - (-)™*162(geq) ! [ 0™V (cos®s - 1)(1 - cos¢) 'sin¢(dé/dr)ds my
. » T
- , =0 :1
- ) (67) oy
- n =1 -
With Eq. (63) one obtains Eé
RS
AT
; Im - 82(_)m+n+1+(n-1)/zzn—1 I pmam-1log(a - cos¢)dp :gj
3 n,2 g
]
- Because of the factor zn-1. Inn.o Will be zero for n > 3. The Ej
5 , o
y discussion is therefore restricted to the case n = 1. There one K
B obtains
R W - lim 2(zI_, )
;; m,1,2 .5 %2 " ml,2 ;q
%
. m ¥ m _m :
’ = lim(-) 3[ p a log(a - cosé¢)(dp/dr)ds CTes
- z+0 0 Hﬂ
: 2 L p-2 m-3 -
g + 2z (m-1)I P a “log(a - cos¢)(dp/de)de i
'f 0 :l.r;
; e
g 2 b pn2 m1 -1 o
" + 2 I p a  '[a - cos¢] (dp/dr)ds S
. AR
:: 0 E;:
5 3 3




If ¢ # O along the entire contour, one obtains immediately
- m m N
Wn,1,2 " ¢ ) .I;p log(1 - cosé¢)dp E‘
and after an integration by parts VA

w

1,2 = (O e 9™ (1 - cose) ' sineds :
for n = 1 I;-:';;;

We observed above that w _ , = 0 for n > 3. One then obtains [ 3
14 t4 'y

from Eq. (66) and (67) w3t
re)

- - o
¥on = (- )m n 2(m+n) ’;’Xpm*ncosm¢sinn¢(1 - cos¢) 1dd» r:.;

,,
We return to a = ¢ + w, and subsequently to the original :::-r
coordinates (£-x) and (n-y). One has ,’ZE
da = [(g~-x)dn - (n-y)dEl/p =

Therefore, ‘_‘::::.
.“\‘:

i 3
¥mn ° B
(69) e

8%(men) ™! [(E-x)"(n-y)"p + (8101767 [(E-x)an - (n-y)dE) =
The result remains the same if at some point of the contour ¢ = 0.
There n ~ y = 0, and £€-x < 0. Then one writes =
(p + (&=xN™1 = (p - (6-x)/(p% - (5-0)9) e

_p - (&-x) =

(n-y)?

3

e‘{
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DA
One thus obtains an integrand 5}
5
(E-x)™(n-y)"2(p - (£-x))p '[(§-x)dn - (n-y)dE] \
el
If n > 3, then there is no singularity. If n = 1, there is one >s
singular point where the integrand behaves as (n-y)-1. The value ;
of ;m1 is then obtained by taking the principal value. f:
This i{s seen from Eq. (67). Let &, be the value of & for . ;ij
which ¢ = 0. In the vicinity of this point we consider & as 5?
variable of integration. Let & = %(¢). Then &(-w) = 0, 2(w) = L, . !y
and 2(0) = £5- In the first integral in Eq. (68), but with limits o
L(-€) L ii
+ . 4]
0 L(+€)
<
one can make the limiting process z+0 and obtains if
n 2(-€) L m B
(-) + [ p 1og(1 - cos¢)(dp/dL)ds
0 L(+e) o
o
In the region -e < ¢ < €, we take ¢ as variable of integration o
1€ -1 2 2
I pPa™ ' (dp/de)log(a - cos“¢) - log(a + cos¢)lde o
-¢ e
This 1s majorized by ;??
€ 2 )
I const log (a“ - cos“¢)cos¢dé + I const d¢ N
-e -'~
sl
se 2 T
= const j 103(25 + sin2¢)d(sin¢) + const 2¢ e
-‘-.
-c z o
=3
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and, by an integration by part

+e
2 +g .
= const|sin¢log (22 + sin2¢) ' - I 29%" Qd(SIEQ) + const 2¢
z z + 8in“¢
~€ -€ -—2'
)

The integral is 0(e), the first term O(eloge). As expected the
term vanishes in the limit e€+0. The first one can be replaced by

p™ log(1 - cos¢)(dp/dr)de

oI

where the slash indicates that an e neighborhood of & = zo is
omitted. Actually, in this form the integral is well defined even
if one does not omit this neighborhood. But if one carries out an
integration by parts, as one does in order to arrive at Eq. (69),
the exclusion of such a neighborhood is necessary and leads to the
definition of the principal part of the integral. The second
integral in Eq. (68) vanishes in the limit because of the factor
22. In the third integral only an ¢ neighborhood of the point (or

points) where ¢ = 0, is critical

e

2

[p%2 a™ 1(a + cos¢)]%%cos'1¢ [55 + sin2¢]-1d(sin¢)
p

-c

The term in the first bracket is bounded. Carrying out the
integration for the remaining expression one obtains as bound

4=+e
arctg(z” ' psing)
¢=-¢

2

z° const pz” |

The arctg function is always bounded. For z = 0, the values are
-%/2 and +%/2. The whole expression is then 0(z).
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For n even the contribution of the sides AB and DE of the
region of integration do not cancel. Therefore, the vicinity of
p = O must be discussed.

As before, g is defined by Eq. (56). We set again
g -8 * 8, (70)

but now (n even)

81(a.¢) - I[cosm¢sinn¢ - a1 - az)n/Z][a - cos¢]_1d¢
g,(a,0) = a1 - a%)"?g, (71)
with
g, - [(a - cosel 'ae (72)
Incidentally, for n = 0, m = O,
g = 8, (73)
One verifies that
EZ = 2(a2 - 1)1/2arct8[(a + 1)1/2(a - 1)_1/2tg(¢/2)]

Using the definition of "a" Eq. (56) one finds

(a «+ 1)1/2(a - 1).1/2 - (a+ 1)(a% - /2 . z-1(p + (p2 + z2)1/2)
Therefore,

z§2 = 2p arctg[z-1(p + (92 + z2)1/2)ts(¢/2)] (74)
%;(282)  2p tg(e/2D) G2 ¢ (B2 s 2%1/2) - 202« 22)7V/2)

22 + (p + (p° + 2°) tg2(/2)

X3}

Va5

5y

L/

0

i

eyt an
.
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The expression Eq. (74) will be encountered only if p # O. 1In the

limit z+0 one can therefore replace (02 + 22)1/2 by p. One then
obtains

2_(25.) = -4p? Lge/2 (z small, p # 0 ) (75)

14

3z °%2 22 . up2 tgz¢/2

Furthermore,
9 (.2 -
lim 3;(232) - cot(¢/2)

z+0

Of course, the expression is meaningless for ¢ = 0. If p # 0 and
¢ # 0, the last equation can be obtained directly from Eq. (72) in
the following manner.

1 1

1im(3(2g,)/22) = lim g, = [(1 - cos)™'de = I(Zsin2(¢/2)_ de

z+0 z+0

11m(a(z§2)/az) = -cot(¢/2)
z+0

For ¢ = m and ¢ = -7 one has respectively tg(¢/2) = = and
tg(¢/2) = -=. Therefore, from Eq. (74)

zéz(w) = pm
z§2(—w) = -pn (76)
and

3(zg,/82 = a(zgz/az) = 0
¢-‘|[ ¢- -

We begin with the contribution of 8> to ;mn’ because there
the vicinity of p = 0 requires some extra attention. To evaluate
the downwash, one has to form Eq. (59). After substitution of
Eq. (71) it assumes the form

k1
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n/2

v - B2(-)™ ™V i 522(z

(1-a2)

m+n-1 m-1 -
mn, 2 lim [o7 " 2 8,(a,¢)dp)

and with the first of Egs. (58),

. B2(_1)m+n+1+(n/2)lim _Q(J pm-1am-1zn(z§2(a,¢))dp) 17)

w
20 9Z

mn,2

R PPN (m e @R R s o fW)

Along the portions AB and DE of the path around ABCDE, ¢ = -w and
¢ = +w, respectively; p(¢) varies, respectively, from zero to
p(-7) = p(w) and from p(w) to zero. Substituting Eqs. (76), one
then obtains (for the two portions combined)

¥

HE500 000

_q p(m - p(m) 5 oo
21'82(_)m+n+(n/Z)Hm[nZn 1 I L 'Idp . (m-1)zn+1 J ol 2, m 3dp]
z+0
0 0

)

"

et

The first term in the bracket vanishes for all even values of n;

for n = 0, because of the factor n = 0, and otherwise because of

the factor z" ',

For m > 2, the integral in the second term gives a bounded

quantity. In the limit z = 0, the expression vanishes because of
the power of z. For m = 1, the second term vanishes because of
the factor (m-1).

For m = 0, one goes back to the first formulation,
Eq. (77). Again substituting Eq. (76), one obtains for the
integral along AB

p(m)
“zn(pZ . z2)1/2 l

)

Forming 1im —
240 0z

For m = 0, n = 0, one obtains

(...) gives 0 for n > 2.

nZ

(92 + 22)1/2 0
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for this limit. Accordingly, the only contribution of 85 for the
portions AB and DE of the path is encountered for m = 0,
n = 0, and one obtains

-2w82 (78)
For the portion BCD (which is the map in the p¢ plane of the

contour of the En-element) the expression, Eq. (77), is written in
the form

m-1 9, n m-1 m-1 nm-1 23,-
32(_)m+n+1+(n/2);* p 232'32(2 a )dp + f,p zZ a az(zgz)dp
Here p # 0. The derivative a(zna(m_1)/az vanishes in the lim 2z-0

for all m and n, (3a/3z is found in Eq. (59)). In the second
m-1

integral, lim a = 1. If the integral is bounded in the limit
z+0
for n = 0, then it will vanish for n > 2, (n even) because of the

factor z". Already substituting Eq. (75), one obtains for n = 0,

4tg(¢/2)

_yI m+1 (79)
B (=) +P 22 + Up 2t82¢/2

For the vicinity of ¢ = 0 the integrand behaves as ¢-1. It can
be shown that one obtains the correct lim z+0 by taking in the
expression

g2(-)m ! p‘“"cot(wa)dp (80)

the principal part.

The use of the principal value in Eq. (80) is justified in
the following manner. First, one excludes from the region of
integration e-neighborhoods of the points where ¢ = 0. Outside of
these neighborhoods, one can make the limiting process z = 0 and
obtains Eq. (80). It remains to show that for every value of z,
the contributions of these neighborhoods tend to zero as €+0. For
this purpose we set

43
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the residue is a_,. Furthermore,
1og(¢1) = 1og|¢1] + im

Denoting by P the principal value one finds

+ ag + a,;6)de =~ a_ [logle,| - logle,| + az(e, = &)

+ 8,95 - 99172

In every situation of this kind the integral will contain a
logarithm. The contribution of the residue is automatically taken
into account by taking the absolute values of logarithms.

This makes an additional step possible. 1In the integral in
the complex plane

¢ 9,
¥m,0,2 - 82(—)m I |:>""1 cot(¢9/2)(dp/do)de
¢, ¢,

an integration by parts is carried out. Then

“m,0,2 I - 32(')m[m‘1[pm cot(¢/2),

¢ ¢

1 1
%2 m

+ I E——— ¢]d¢ - in residue]
\

Taking the above example and carrying an integration by
parts one obtains
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L2
] (a_.¢ ' +a. + a ¢)do
-1 0 1

¢
1 1 e %2 4
- ¢(a_1¢ + ao + a1 ¢)' - j (81 ¢ + a1 ¢)d¢
o o

The integrand after the integration by parts has the same residue
as the original integral. Again, one takes in the analytic
expression for the resulting integral the absolute value of the
logarithm.

If one carries out the integration only along a portion of
the contour, then one must of course include the expression
outside of the integral. 1If one makes this integration by parts
along all sections of the contour, then the terms outside of the
integral cancel each other.

The same integration by parts can, of course, be made for a
contour of the En-element for which ¢ # 0 everywhere. Thus one
can always write

"m0,z = 8" $ "1 - cose)”

a6 (n=0), m > 1 (81)

if one uses for the individual sections of the contour, analytic
expressions for the integrals, substitutes the limits, and takes
the absolute values of the logarithms which may occur.

For m = 0, n = 0, the evaluation of the expression Eq. (80),
now given by

g2 ’{’p" cot(¢/2)dp
is carried out as follows. One has

cot (¢/2) = (1 + cos¢)/sing = -(1 - cosa)/sina
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We defined £E-x = p cosa, n-y = p sina. Accordingly,

A

-1 dp (E-x)pdp
p cot(¢/2)dp = - fp —— +
s n-y ‘f’p (n-y)

The second integrand is transformed into

(£-x)[(E-x)dE + (n-y)dnl/(p2(n-y))

BP0 B COCERE IE

- [(E-x)2dE + (£-x)(n-y)dnl/(p2(n-y))

,' e
. ) ‘
[l TR A

: LR )

Here (E-x)2 is replaced by p2 - (n—y)z. ol
One then obtains T
) 3
(dg/(n-y)) + ([(g-x)dn - (n-y)dgl/p") = (d&/n-y)) + d¢ 55
For points xy outside or inside the En-element, one has, .
respectively, +-d¢ = 0 and d¢ = 2n. The second expression .Q
cancels the contribution to ﬁo > Shown in Eq. (78). Moreover g =

14 «
O form = 0, n = 0. Thus one obtains, generally, o
=
- 2 (dg/ds) - (dp/di) -
- 2 SN
Woo = B + 7y ds (82) 3
=

For (n-y) = 0,

dp = dgsign(g-x)

-.", & P R
R M AR

If n-y = 0 and (E-x) < 0 (x in the wake of E), a singularity will
arise and the expression must be interpreted (according to the
above discussion) as principal part. In the discussion following

- - IR

LA

"]ﬂ ol ’
k PR

Eq. (78) we found that
;m,n,z =0 for even n > 2 (83) QE
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e
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The portions AB and DE of the contour in the p,¢ plane start at
p = 0. There, ¢ = -7 and +n, respectively, and one has to form

according to Eq. (59)

p(-w) .
;ig 3% {z(-)m*"ﬂs2 I PL AL [31(a. -7) - g,(a, w)]dp}
0

- p(-m) .
- 82()" 14 { ptn 1, [g,(a.-n) - g, (a,™)1dp
z~+0 0

p(-m), o _ -

phen-3,-1 3 (a7, (a,-m) - 81(a.ﬁ)])dp}
Forming the limit z+0 one replaces in the first integral, a by 1.
The second integral vanishes because of the factor z2 if m+n > 3.
We are discussing cases for m+n > 1 and n even. Since n is even,
m+n=1 implies m = 1. Then by its definition, Eq. (71)

g = I (cos¢ - a)(a - cos¢)-1d¢ - -¢

and one has to form

gl-m) 1 2,1/2 Sl
S
0
> p(-m)
- ;13 [(92 + 29172, (92 *222)1/2 ] l = p(-m)
0

This is the same as if one had set a = 1 in the j a-1 dp. For
m+n = 2, one has either n = 2, m = 0, orm = 0, n = 2. 1In each
case one deals (except for the sign) with an integral

2 2
g‘(a.¢) - I o9 ¢ - a d¢ = I (cos¢p + a)de = sing + a¢

cos¢ - a
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Then g,(a,w) - 31(3,-1) = 2xa and one has to form

lim & (2 I p2ndp) = wpz(l)

z+0 9z

One thus obtains in all cases as combined contribution of the
portions AB and DE due to g,

n

g2(-1)m* A+l a,

(8,(1,-m) - g (1,+m) (men) ' o™

This expression cancels the term outside the integral in Eq. (85).
One thus obtains (after returning to a)

ﬁm n " Bz(m*n)-1 ] pm’ncosma sinn(a)[1 + cosa]-1da. (86)
even n > 2

Since, according to Eq. (83) ;mn o = 0 forn > 2, this is W
9

(rather than "mn,1)' Moreover

mn

;m'0’1 = Bzm-1 I pm(cosma - (_1)m)[1 . COSG]-1da ’ : ?

(AN |

This is combined with the expression ;m 0.2° Eq. (81). One then
1 ?
obtains
W - W ‘W - g2n! p®cos®al1 + cosal 'da (86a)
m,0 m,0,1 m,0,2 55 ’

if, as was stated above, one uses for the individual sections of
the contour analytic expressions for the integral, substitutes the
limits and takes the absolute value of the logorithms, if they
should occur. Actually, with this interpretation Eq. (86) is
generally valid.
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These results give the contribution to K obtained for the Q;A

power zero of the frequency k, which will be indicated by a :Eﬁ
superscript. In the original coordinates one obtains “‘%
v

»
'l

hJ
w2
rarri

Wontxy) = 82(men) ™! (8- (n=y)"Lp(p+(E-x)) 17 [ (£-x)dn~(n-y)dE]
(87) £
except for m = O, n = 0

For n odd, this is a repetition of Eq. (69). For n = O, one must
follow the procedure described after Eq. (86a).

iy Furthermore,

Wo(x,¥) = 8% §a (de - dp)(n-y) (88)

Eq. (51) gives the result for the first power of the reduced
frequency. Introducing again the form Eq. (52) for Ap considering
a single term and carrying out the integration with respect to p,
one obtains

Wan = (@) €= (n-y)" [ (£-x)an-(n-y)dE) (88a)
The results of these discussions can be summarized In a

simple manner. We assume that for x,y fixed, AB has the form of

Eq. (51), i.e., a development in powers of (g-x) and (n-y).

Except for m = 0, n = 0, the correct expression for the upwash at

Z = 0 i3 obtained by setting z = 0 in the expression for K. One

then has to evaluate integrals

I - ]j F(g-x,n-y)d&dn (89)

For z =« 0, one has R = p. Let

E-x = R cosa -

=
u?j

A

n-y = R sina

.-a. .t. .'. .l'
RN
RN

&

R
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- .‘
B For one of the summands in Ap and one power of the reduced :ﬁ
. frequency k, the function F has the form IA
=
X F = R (a) (90) o
- -~
) R
" Then 51
. I - U (a)R : %
; “’ R*f(a)RdRda E"'-:'-
oy
5 = (q+2) ! f-R(a)q*zf(a)da e
' "s
- or in terms of the original coordinates E}
- I - (qe2)”! f'F(E,n)[(i'x)dn°(n‘v)dE] (91) o
. oY
b

2 If q = -2 (1.e, for m = 0, n = 0 and for the power zero of the P
’ reduced frequency), the procedure is not feasible. The gj_
integration with respect to R gives log R. The limits for R are 0 ﬁi

and R(a). The lower limit gives infinity, which is an indication f;

that this simple minded procedure fails. Here it is necessary to =

proceed in the manner described above; one carries out limiting i{

Y

process z+0 only after the integrations with respect to £ and n Y

(or p and a) have been carried out. This gives Eq. (88). Another "
limitation of this rule arises if n = 0, m > 1, the power of the -

reduced frequency is zero and if along the contour n-y becomes ﬂ{

zero. Then the integrand will contain a denominator (n-y)z, and ;2}

3 the integral becomes nonsensical. One then has to apply the ;ﬁ
procedure described after Eq. (86a). o

In K1, one finds terms which, after one sets z = 0, gives j?f

rise to integrals "
I = [[ log (n-y)F(g-,n~y)dEdn (92)
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where F has the form assumed above. Then
1= ff log(Rsina)R%"' £(a)dRda
- [[ (log R + 1log sina)R?" 1 £(a)dRda
- (q+2)-1 I f(a)Rq‘z[logR(a) - (q+2)’1 + [log sina)lda
This is written in terms of the original coordinates

. I - (<1*2)”1 }-F(E.n)[los(n-y) - (q+2)_1][(€-x)dn - (n-y)dgl (93)

=
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SECTION V
THE UPWASH AT A GIVEN POINT (x,y)

We evaluate in this section the upwash at a fixed point x,y
due to a pressure distribution in a given En-element. To each
triangular or trapezoidal elements belong, respectively, 3 or 4
elemental pressure distributions. The results can be expressed in
terms of elementary transcendental functions, provided that the
elemental pressure distributions have the form of polynomials in g
and n. These formulae will be needed if (x,y) lies within or in
the vicinity of a En-element. For triangular element and AB
linear in & and n, one obtains pressure distributions which are
continuous at the common boundary of neighboring elements. For
trapezoidal elements, one can achieve only imperfect matching even
if one uses terms of higher order in § and n. Except for this flaw
in the basic data, the analysis is independent of the shape of the
elements.

For triangular elements the corner opposite the side that is
parallel to the £ axis has the number 1, from thereon one proceeds

in the counterclockwise direction. The elemental pressure
distributions are then given by

_(1) (1) (1) (1)
Aop (g,n) = cg * o (&-&) +c, (n-ny) i=1,2,3

where

(1) (1) (2)
c - 1’ c, - Ol 01 - _(n2_n1)

(2) (2) -1 (2) -1
co -0, 01 = D (ﬂ3'ﬂ1). c2 - ~D (53-51)
(94)
(3) (3) -1 (3) -1
co -0, 01 = -D (nz‘n1): 02 =D (62-£1)

[~
[ ]

[(£2—51)(n3-n1) - (53_51 )(nz-n1 )]
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The upwash is evaluated separately for these three
expressions Aﬁ(i).

We shall write during the derivations of the formulae

- (1) m n
Ap(g,n) = ):cmn(x.y)(z*X) (n-y)

For triangular elements one has in particular

R
- (1) (1) (1) o
8p(g,m) = c  (x,¥) + ¢;4(E-X) + cp) (n-y) (95) %ﬁf
where
(1) (1) (1) (1) i
: Coo (X2¥) = cq + ¢y (x-8y) ¢ ¢, (n-yy) 5;:
X _ .
(1) (1) (1) (1) (52
0 “% i "% 2
Later, in integrations over x and y, each of the expressions iﬁl
_(1) (1) (1) (1)
Ap (xtY) - coo (xvY) + 010 (E-x) + 001 (TI‘Y) "t
will be used in three different forms. Ry
_(1) (1) (1) B
8p (x,¥) = 8y 4% eqg (X=8y) + cgq (¥yomy) (96) s
| ‘ Y
Here the subscript i refers to those corners of the En- ?;f
element for which the elemental pressure is 1. (For the other gj;
corners the elemental pressure is zero); j is the subscript of any o
of the three corners when it is used as origin of a x,y-system. t%(
! The discussion of the limiting process z+0 in Section V has :ﬁﬁ
led to integrals around the contour of the gn-element which give R
the upwash at a fixed point x,y due to a pressure distribution ;if
Ap 1)(E.n). If the point xy lies in the interior of the En-element o
[ o, -
or of its neighbors then the integrands of these expressions are e

55 38




analytic functions except for well defined singularities. The
author hoped originally that the smooth part of these integrals
could be evaluated numerically. But upon closer examination, he
realized that for a point (xy) close to the boundary of the g£n-
element the integration over £ and n will encounter difficulties in
spite of the analyticity of the integrands. Fortunately, the
integrals can be evaluated in terms of elementary transcendental :
- functions, although one obtains fairly lengthy expressions. g:

PR EXS
I,' .

L4
L)
.

.

S S

Pl

o The difficulties arise in the following manner. The
integrands are analytic for real values of the variable of
integration, but in some vicinity of the origin they have . E'
2 singularities (poles and branch points) at complex values. As the 8
point (xy) moves closer to a boundary of the g§n element the -
interval of integration extends farther and farther along the real
axis (if one keeps the singularities in fixed positions). One
i might then divide the region of integration into a section close to :
- the singularities and a remaining part. But even the second {;
section is not well suited for numerical integrations. Let z be .
the variable of integration and f(z) the integrand. A suitable
variable of integration in the outer region would then be 1/z and
one must form . o

- | 2% £(2)d(1/2)

where (1/z) is the variable of integration. This works well only <3

if zzf(z) is a regular function of (1/z) for 1/z2 = O, The terms

Z which violate this requirement are fairly easily identified, so
that one could treat them separately. But since an analytical
integration over the whole range is possible it appears more

N practical to follow this course. Naturally, once programmed one

A will use these formulae also if the point (x,y) is not close to the !
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element boundaries. Later this procedure will make it possible to
carry out also the integration over x and y analytically. The
integrals to be evaluated are given by

T

Ij Ap(E-n)K(E-x,n-y,k)dEdn

The function K is found in Eq. (B.63)
K = 87 exp(1k(E-x)[K, (E~x,r,k) + Ky(E~xX,r,k)]

where, according to Section 1V, r can be replaced in most cases by
In-y].

We have introduced
AP(E,n) = exp(ikE)Ap(E,n) (97)

Within the elements Aﬁ(g,n) is represented by shape functions which
are linear in £ and n. The infinite sums in K2 can be truncated
after only very few terms, because K is usually small and because
the present discussion refers to points (x,y) within or close to
the En-element. In the following term of K2 the exponential
function is expressed as a power series.

1

r (k) 1/
1

(RV)™ ' (exp(1kV) - 1) = 1kR™
In Ueda's formulation one finds a similar term namely R(V2 + :‘2)‘1,/2
exp(ikV). The present simpler form arises from a combination of
this term with other expressions of K, (see the discussion
following Eq. (B.59). 1In the present context this brings about a
considerable simplification in the integrations. 1In the procedure
of Ueda and Dowell the simplification is only minor. All terms of
K2 can now be brought into a form

P(g-x,n-y) + R'.1 P(E~-x,n~y)

57




where P(E-x,n-y) denotes a generic expression for a power series in
their arguments. In practice one deals with polynomials.

We shall derive integration formulae for the lowest powers of
the reduced frequency k of the development of K, namely k°, k,
kzlogk and k2. For a portion of Ap given by (E—x)m(n—y)n, we
shall denote by izmn the integral over the En-element. The
superscript & refers to the power of the reduced frequency k. i;n
+ does not contain the factor (8w)-18—1exp(-ikx). After substituting
Egs. (B.66) and (B.67) one obtains the following expression

PN L As e ndt, oy

Ion = 8% [0y 2R 7R - (-x))dean; men 21 (98)

(The case m = 0, n = 0 has been treated separately.)

- -k j](g-x)m(n—y)nR-1dgdn; men > 0 (99)
2
=2 K m n -2 -1
I3 ”(a-x) (n-y)"[C - (B “(g~x)R ) 1009
+ (log(k(R + (£-x)))1d&dn |
Here,
r2 - (n-y)%, R = [(£-x)% + (n-y)21"7/2 (101)

The function V which occurs in Eq. (B.67) is found in one of the
Eqs. (B.61).

C = ~(1/2)[p(1) + w(2) + log(1-M) + 210g2 - im + 8 2M]  (102)
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Then, according to Egqs. (89), (91), (92), and (33)

10, = 8% men) e (6™ (n-y) " T2RTT (R- (E-x)) [ (E-x)an- (n-y)dg] (103)
Ton = ~ik@@eneD) ™! (60" (n=-y)™R 7 [(g-x)dn- (n-y)dE] (104)
2 -

2 . (%/2) (mens2) "] (=) (n-y)"{c- (872 (g-x)R™T) (
105)

+

(Log(k(R + (£-x)) - (m+n+2) ' )[(E-x)dn - (n-y)dE]

The path of integration is the contour of the element. Practically
this means that we have separate expressions for the sides of the
triangular or trapezoidal element. Accordingly we write

=3 A 12z4 23=4 31=z8

Imn = Imn + Imn + Imn (106)
where the left superscripts refer to the end points of the sides
(as one travels around the En-element in the counterclock-wise
direction). We shall derive separate formulae for the sides
parallel to the £ axis and sides inclined to the £ axis. For a
side of the gEn-element between the point i and i+1l, not parallel to

the E-axis, (where for triangles i+l = 4§ is understood to refer to
point 1), we define

t801’1+1 - (51#1 - Ei)/(ni+1 - ni) (107)

The subscripts of a will frequently be omitted. The expressions I
appear first as indefinite integrals. After substitution of the
limits of integration (expressed by Ei'“i’ and £1,1,n1+1). one

obtains two expressions (x-gi, y-yi) and (x-£1+1.y-ni+1). Those
expressions will be denoted by

1 - -
Ion (X"&3s ¥-my, oy 4,,) and Imn(x Eie1r Y Mjuqr @ g49q)

X
A

XARS

t “ 0




e

so that

i,i+172 _ ;2 . - 1L _ _
Imn Imn (x Ei*‘ Y 01*1»01']-_”) Imn (x Ei’y nijai'i,‘,‘) (108)

Information about the side for which the expression is being
evaluated enters through the argument Of fep*
’

For the side parallel to the £ axis, Qe insert #/2 as
argument of a. The expressions I(..a)(to be found later) tend to
infinity as a » #/2, but I(..n/2) remains finite. This happens
because of the occurrence of a-dependent integration constant which
tends to infinity as a+w/2. They cancel as one forms the integral
between points i and i+1. The expressions R = ((E-x)2 + (n-y)z)v2

will introduce branch pbints of the second order in the integrands.
We write

£,1
m,n - Imn + 1 (109)

The additional superscripts 1 and 2 refer respectively to the
absence and presence of such branch points, For a = w/2, one has

UEETE PR PR const, dn = 0. Then we shall introduce,
oy =v (110)
(E-x) = w.v (111)

and consider w as variable of integration. For the power zero of
the reduced frequency, one has according to Eq. (90)

0 2
Ijo = *8 [I %éy - I %gy (112)

R is defined in Eq. (101). For agy = w/2 one has to evaluate
(because dn = 0).

1,i+1.0 _ 1,1+1.01 0,i+1
100 I +

02
00 oo
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with
. i+
i,1+1IO1 - e B2 ) dg
00 I (ni -y)
&y
Ei+1
i,i1+1._02 a2 ’ (g—x)dg
.I00 = -8 : j R "1 i
i
Hence,

1,1+2,02 _ (82 £ )
00 n -y

and with Eq. (111),

W
i+
1,i+1.02 .2 ) ! 2 ~1/2
"Io 8° sign(n; - y) I w(w® + 1) dw

vy

W+1
2 2 172
- -B sign(ni - y)(w + 1)

Wy

If one goes back to the original variables, then one obtains

(w2 + 1)?/2 - sign(ni - y)R/("i -y)

because R is always positive. The sign functions cancel in the

original coordinates. This happens in all formulae. For

61
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simplicity we shall omit in future computations such intermediate
sign expressions. For future work it is convenient to introduce

X =x-§,Y=y-n (113)
and
U=-u, V-V
Then,
100 (X,¥,n/2) = %x/Y (114)
192(X,Y,n/2) = 8%R/Y (115)

According to Eq. (103) one has to evaluate for a« = 7/2, the power
zero of the reduced frequency k, and m+n 2 1

1,i+170  _ i,i+1701 1’1+1i02

'Imn 'Imn mn
with
£
- - _ i+
S SR T DG PR L B (PO
&
i1
= -82(m+n)‘1(m+1)—1(ni ~ y)n‘1(g—x)m+1 '
)
and
1,14120,2 .2 -1 peq L+ m+l -1
L = 8°(men) “(ng - y) j (g-x) 'R dE
&4
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W= (g-X)/(n; - y)

o,

.".\

one obtains E:
:‘.\,

e
W W -
i+1 N
i'“?lgr’lz - Bz(m*n) ?(n1 - y)"”n I (w2 + 1) Vzwm”dw S
Wi

Formulae for the integrals occurring here are found in Appendix
C. Specializing to [m,n] = (1,0] and [0,1] one obtains

1?; (X,Y,n/2) = (82/2)x%/¢

192 (%,Y,7/2) = (8%/2)[(RX/Y) + Ylog(k(R - X))] (116)

01
01

2

I (X,Y,n/2) = g°X

Igf (X,Y,%/2) = §°R

The factor k in the logarithm amounts to a change of the constant
of integration. If the expression is written in this form, it will
not change if one changes the reference length L.

For a = #/2 and the power 1 of the reduced frequency k one
obtains from Eq. (10U4)

13
141
1,1+1=21 ~1 ~1 m n+1
’ Imn - + 1k(m+n+1) ) I R "(g-x) (ni - y) dg
&
63 o
o
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Again, w = (;—x)/n1 - y) is introduced and one obtains

£ KRR 1

Wi+t
i.i+1'-1-1 - ik(m*n+1)-1(n _ y)m+n+‘] I ' (HZ . 1)--1/2Wll1dw
'~ mn 1 Wy
Cd

P A AN
<o

%

These integrals are found in Appendix C.
j (w2 + 1)—1/2dw = log ((w2 + ‘I)”2 + W)
[ue? + 1720 - (2 0 )12
One.obtains
Igo(X,Y,7/2) = -1kYlog(k(R - X))

I}O(X.Y.n/z) - -1(k/2)YR (117)

Iél(X,Y,w/Z) - 1(k/2)Y°108(k(R - X)

For the powers k2 and k2 log k one evaluates according to
Eq. (86).
=2 _ 22,1, =2,2 , 72,3
Im,n Im.n * Im,n ¥ Im,n
with
1,1+41=221 2 I 1
W pn - ~kE/2)(mene2)TIC [ (gm0 ™y - )T g
&
1,1+1:2,2 2 e m+2 n+l -1 =
U0 - kC/2)(@ene2)T [ (0™ g - )R ag =
o
64 N
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1'1*1i23 -
Tmn

~(k%/2) (m+n+2)")

Hence

22
In Imn one intr

and thus obtain

£y
I (E—x)m(n1 - y)n+1[log(k(R + z-x))-(m+n+2)-1]d5
&4
21 2
I35 (X,Y,1/2) = -(k°/4)Cxy
If; (X,Y,%/2) = (k2/1z)cx2x (118)
12V (x,Y,w/2) = + (k2/6)CX¥2

01

oduces w = (E-x)/(n1 - ¥) in an intermediate step

8 integrals listed in Appendix C. Hence

125 (X,Y,%/2) = -(k°/u)8 YR

155 (X,X,7/2) = (K®/12)8720axR + Y3log(k(R - X)] (119)
155 (X,¥,%/2) = (k°/6)87°Y°R %
Furthermore, iiﬁ
.'f:.\
» 1 1 I » - . .
B11112.3 L a(/2) P (mene2) T (ng - )™ B
with ;iﬁ
TR
S B, b
I = I © (g-x) [log(k(R + E-x)) - (m+n+2) 'Jdg e

&




1

I = (me) " {(E-x)™ T [10g(k(R + £-%)) - (m+n+2) ']
141
- (e-x)™ TR Vde}
&4

With w = (E~x)/(ni -~ y) one obtains for the last integral
expressions listed in Appendix C; in particular

| (e-x)R"'de = R
2_-1 2
[ (&=x)°R"'dg = (1/2) {(g-x)R-(n; - y)“log(k(R + &-x))}
Therefore
123 o ~(k/2)3( - -
00 " ng - y){(g-x)[log(k(R + E-x))-1/2]1 - R}
or
123 (x 2
00 Y, m/2) = -(k/2) {Yxtlog(k(n - X)) - (1/2)] + YR} (120)
153 (X,Y,%/2) = (1/3) (k/2)%(Yx%[Log(K(R - X))-1/3]
+ (1/2) XYR + (1/2):3log(k(n - X))
123

23 (x,¥,%/2) - (2/3)(k/2)2§Y2X[log(k(R - X))-1/3] + Y°R}

This terminates the case a = /2.
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For a # n/2 auxiliary systems of coordinates are used. The
"sheared" coordinate system is defined by

ug = (g~x) - (n-y)tga, E-x = ug + vy tga (121)

vs = Ny, ny = VS

Along the side i,i+1 of an element one has
Ug = Uy " Ugiy " const. = (E1 - x) - (ng - y)tga (122)
Note that

(g~x)dn - (n-y)dE = ugdv, - vgdus = u,dvg (123)

(The last simplification occurs because u
side i,1+1, and therefore dus = 0.,)

5" const because along the

The "rotated" system of coordinates is defined by

u = (g~-x)cosa - (n-y)sina, E-x = u cosa *+ V sina
(124)
v = (g-x)sina + (n-y)cosa, n-y = -u sina + Vv cosa
Along the side i,i+1 of an element one has
u~u =u ., =const (125)
u . =cos 'au (126)
si i
Note that
R2 - (E-x)2 + (n—y)2 - u2 + v2 (127)
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Therefore,

'..
RO

R

L

(E-x)dE + (n-y)dn = u du + v dv = v dv (128)

o™

The last simplification occurs because u = const along a side
i,i+1. Moreover

RS o

(E-x)dn - (n-y)dE = u dv - v du = u dv
We shall furthermore introduce
W= v/u1

0 = arctgw = arctg(v/ui)

sine = v/R

CcO86 = uilﬂ

sign(cose) = sign uy

Moreover,

sin(8-a) = (v cosa - uisinu)/R = (n-y)/R

e e e
e St e,
RN
g « v T

: Lt

cos(6-a) = (uicosa + v sina)/R = (E~x)/R

LT
A 4
[N

The basic formula for a # w/2 and the power zero of the
reduced frequency is quoted in Eq. (112). We introduce the rotated

v,

(4

.
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system of coordinates Eqs. (124) through (129) and Eq. (130). :
Writing o

i,i#130 _ i,i+1=01 _ i,1+1:02 o
Too oo * Too K

MR A g

one obtains !

. ) i } b
1’i+1185 = 32 I sina(w cosa - sina) 1dw (135) N
i

' w
N i+
. i,i+13z02 2 - -
: . Igp = - 8”7 sign u, I (weosa - sina) | (w? + 1)

W

wdw (136)
i

e
Eq. (135) gives fx

W,
i

a4

i,i+1= e
: +1*71701 - 82 tga log(w-tga) .| -

b, LA Qiﬁ
Introducing 6, Eq. (131), one obtains :ﬁ’

. %141 I
Ly *1igé - thga log (sin(6-a)/cose (137) “

84

In Eq. (136), 8 is introduced immediately. One observes that .

1

2 1)1/2 = sign(cosg)cos 6

(w™ +

S -, KA .,
e L S

. P X e
i,"" g " e, ] % e Ter e e e
221 g ISR ST .

1{.‘.'
s s 8

kAT
2 %1 ..-’l.l'

i
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Then with Eq. (133)

1,1+41502 _
00
(138) -
-
2] 0
i+l i+
‘82 I :é:gsg:(e—c) = -82 I "[tga sin(6-a) LN cos” 'a cos 1e]de
8y 8y

- -8%{tga log[sin(e-a)(1+cos(8-a)) '] + cos ' alogl(1+sine)cos ']}

Combining the expressions Egqs. (137) and (138) one obtains
1114170 - 8%{tgalog((1+cos(8-a))cos™ o)

(139)
e1+1 '
~ cos” Valog(1+sing)cos ' o)}
. o

We return to the original coordinates, but partially retain uy .
Again the definition Eq. (113) are introduced. 1In addition we set

Ve-v = Xsina + Ycosa (140)
U= - u = Xcosa -~ ¥sina

Then (with a different constant of integration)

Igo(X.Y,a) - Ba{tga log(k(R-X)) - cos 'a log((R - V)/{u|)}

R = (x2 + 12)1/2 (141)

The basic formulae for the power of the reduced frequency O
and m+n 2 1 is Eq. (103). We write
=0 =01 =02

Imn = Inn * Imn

......
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DY

fﬁ; - 8%(mem)”! I(E-x)m(n-y)"_zt(a-x)dn - (n-y)dg] (142)
Tpa = -8%mem) ™ [(e=)™ (n-y)" PRI LCE-x)dn - (n-y)aE]  (143)

For n = 1, the integrand contains a factor (n-y)—1. The

integrals are then interpreted as principal values.

For n = 0, one has a factor (n-y)-z. In Eq. (103), (from
which Eqs. (142) and (143) arise) no singularity is encountered if
E-x > 0. The singularities in Eqs. (142) and (143) appear because
of the separation into terms with and without R. The separation is
necessary for the derivation of analytical formulae. 1In the
evaluation of the integrals one follows the procedure described
after Eq. (86a).

Introducing sheared coordinates, Eqs. (121) through (123),
one obtains

i
1'1*113; - 8%(m+n)”! I (ug; + vstga)mvsn 2usidvs
v
i

Developing (usi + vstga)m one obtains elementary integrals.
Specializing immediately one obtains

Vsi+1
1,i41301 _ g 2., 2
190 = £20-(u2/v)) + tga ug log|kv,]|] | (144)

Vsi

vsi+1

1,1+1:01 _ .2
101 8 usilog|kvs| I
Vsi

These expressions will be rewritten in terms of Y and U in
Eqs. (147).
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The evaluations of 1’1+1Ig§ uses the rotated system of

coordinates Eq. (124) through (129).

> -1 i+1
-8 (m+n) " . I (u;cosa + vsina)
i

v

1,1+1502 me+1

mn

(-u;sina + v cosa)n.z(ui2 + v2)-1/2uidv

and with

1*1
1,143 gi = -82(men)” ty0*n I (w sina + cosa)™
Wt
(w cos -~ sina)nqz(w2 + 1)-1/2dw

For n 2 2 one writes the product of the first two terms in the
integrand as a polynomial in w. One then obtains the expressions
treated in Appendix C. For n < 2, one must carry out the division
which gives a polynomial (of rather low order in w) and remainder
terms with denominators (wcosa - sina)(w + 1)1/2 and

(wcosa —sinu)z(w2 + 1)1/2. Also these integrals are treated in
Appendix C. For the'ease m=1, n =0, one has

(wsina + cosa)z(wcosa - sina)-z

- tgza + 2sina qps-za(wcosa -~ sina)”! + cos %a(weosa - sina) 2

M
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Then with Eqs. (C.16) and (C.17) wr

. . [ ,
1'1*1T°2 - -82 sign(u;)u {tgza log((w2 + 1)1./2 + W) "oy

10 i77%1 e,

. LN

-2 -1 b
+ sina cos “asign(cose)loglsin(e-a)(1+cos(6-a)) 1] ' 5
-cos°1asign(cose)sin-?(e-a)} !E'

] The sign functions cancel because of Eq. (133), as can be seen from e
the following discussion o

- - g?
sign (ui)log((w2 s )12 0wy - ii

(sign(ui)log[(ui2 + vz)?/2 + (signui)v)/|u1|] if
e

The sign function can obviously be omitted if sign (ui) = +1, if

Consider now sign (“i) = -1. Then one obtains for the right-hand :

side .
2 2,1/2 2 2 2,172 ».:-:,.

-logl(u;” + v7) - v)/Juy|d = -1oglu “/Cfu ] ((u,” + v5) "% + v) 1] b&

- logl((u2 « v&)!72 . v)/juy]| o

1 i A

Therefore, e
(stgnu1og((w” + 112« w) = 1ogl(u® + vH2 + v)/ju|d =

One thus obtains (with a change of the constant of integration) T

B 1'1*?102 - £ 2u {-tgza loglk((u 2 . \!2)1./2 +v)] :it
- 10 "2 "1 1 -
- 145) il
5 1+1 L3
- - sina cos_zalog[(n-ni)/(n + E-x)] + cos-1aR/(n-Y)} o
- e
. i gj
N

B

oN




................................. ;

One has for the casem = 0, n = 1

(wsina + cosa)(wcosa - sina)-1 = tga + cos-1u(wcosa - sinm)-1

Therefore
i,i+1302 2 -1
' Igy = * B8 ui{-tgalog((n+v)|ui| )
(146)
i+t
- cos”'a 1og((n-y)IR + (£-x)17")
i -
Collecting these results (Eqs. (144), (145), and (146)) and ZE
replacing ug in me by cos 'a U one obtains !
- _ .
I?é(x,l.a) - 8%(cos 2a (UZ/Y) - sina cos 2a U log|kY|} .
: (147) o
Ig:(X.Y,a) - -8%cos™'a U log|kY| o

B

(In these equations a term log (cos a) has been omitted because it
can be incorporated into a constant of integration.)

192(x,Y,a) = 82U{tg®a 1og((R-V)/|U]) - sina cos “a log((R-X)/|Y|)
+ cos 'a R/Y) (148)
02, 2 -1
Ip1(X4Y¥,a) = 87U{tga 10g((R-V)/|U|) - cos & log((R-X)/|Y]|)

See Eqs. (113) and (140) for the definitions of the variables.

For the power 1 of the reduced frequency k, one starts from
Eqs. (104). Introducing the rotated system of coordinates
Eqs. (124) through (129) one obtains for a # w/2

T4

TN .- R P TP I S LT RO
3 e T e e % R T P iy SN - AR e S R
W L TN SNSRI Shg LI I g S . T Sl T B NP S B SIS I ST e Dy ves clet s T AN ORI St A

-
..........




.................

2 2,-1/2

1= 1 Y11 m
L1413 LtV ) (uicosa + v sina)

I - ~ik(m+n+1) ! [t

Vi

(—uisina + cosa)nuidv

and with

W o= v/ui

W
1,1+151 ~iKk(m+ +1)—1 m+n+1 i
) Ton " m+n+1) uy . I

(w2 + 1)?/2(wsina + cosa)m

W

i

(weosa ~ sina)™dw

Hence

I0o(X,Y,0) = +ik U log(R-V)/|U]

I}O(X,Y,a) - +1(k/2){sina UR - cosa U° log((R-V)/|U|) (149)

1, (X,Y,a) = +i(k/2){cosa UR + sina U° log[(R-V)/|U]|]

Eq. (105) is the basic formula for terms of order k2 and kzlogk.
We write as before

=2 221 =22 =23
Ion = Ton * Ion * Imn ‘
121 is treated in the rotated coordinate system. The results can o

on L&
be obtained in the "sheared" system of coordinates, but this

complicates the limiting process a+7/2.
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Y

&

&

n

"

7

v .

i+ -

1’1+1i§; - (k2/2)C(m+n+2) ! I (sinav + cosaui)m ﬁ

Vi ::

\,‘

n ~

(cosav - sinau,) u.,dv by

17 Y ;

A

Hence, E
Izé(X.Y,a) - (kz/N)C uv

120(X,Y,a) = (k%/6)C{-cosa U°V - (1/2)sina uv?) (150) "B

I%}(X,Y,a) - (k3/6)C + (sina UV - (1/2)cosa UVZ) -

22 ‘ i

I°° is treated in the rotated system of coordinates. With w = v/uy F

one obtains :;

1,1+1522 2,2 1 mens2 1*1 1/2 :

' I, = "8 (k“/2) (m+n+2) ‘uy I y . E

i =

(wsina + cosa)m*1(wcosa - sina)"dw i

a

One has N

for m = 0, n =0

J(w2 + j)‘1/2(w31nq + cosa)dw = sina(w? + 1)1/2
+ cosa logl(w? + 1)!/% + w), :
form =1, n = 0 .
~1/2 1/2 X

I(w2 + 1) (wsina + cosa)adw - (1/2)sin2aw(w2 + 1)

ERS T

172

+ ZsinaCOSa(w2 + 1) 1/2

+ (cos?a - (1/2)sin%a)10gl(w® + 1'% « wlx
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and for m = 0, n = 1 A

I(w2 + 1)-?/2(wsina + cosa)(wcosa - sina)dw

2 2 1/2

AR

= (1/2)sina cosaw(w"™ + 1)1/2 + (cos®a - sinza)(w2 + 1)

¥

- (3/2)sina cosa logl(w + 1)?/2 + w)

R
":ll_s gt
L R

Therefore

' 122 . g2(k%/4) {sina U R - cosa U? log((R-V)/|U]))

N LR

,
[

S
.
.I.' [

v

’

"7v |
ST T O T T N TR S, T, T, NS
e
&

122 . _g2(k2/6) {(1/2)s1in%a UVR + 2sina cosa U°R

10

LN AT A
'a

a.

3

~(1/2)(3 cos®a - 1)U3 10g(R-V)/|U]) (151)

Igf = ~32(k2/6)§1/2 sina cosa UVR + (0082a - sinza)UZR

+ (3/2)sina cosa U3 log((R-V)/|U]) -

Using again the rotated coordinate system one obtains from Rt
Eq. ( 10“) .:.;_
s

v
_ - i+
1’1*?I$3 - (k2/2)(m+n+2) ? I (uicosa + vsina)m(-uisina + vcosa)n

Vi e

[log(k(R + u,cosa + vsina)) - (m+n+2)-1ui]dv (152)

i

.5#.
ot 0 0P

.1 ,'
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% and with w = v/ui

i,i+1= 23

- (k2/2) (m+n+2)"] u M2

(153)

w1+1 m n -1
I “(wsina + cosa) (wcosa - sina)?[f(w) - (m+n+2) ' Jdw
¥
where
2 172
f(w) = log(kui) + logl(w® + 1) + wsina + cosal
Let
- J M
QJ I w'f(w)dw (?5 )
Then

1,1+1523 _ 1+1
Ioo (k /4)[ ( Q, (1/2)vui]1

1'1’?i$g = (k2/6)[cosa u13Q0 + sina u13Q1
(155)

- (1/3)cosa uizv - (1/6)sina ulvzli*?

i, 1+1123 (k2/6)[- sinau13 Q, *+ cosa u13Q1
+ (1/3)sina uizv - (1/6)cosa uyv ]1+1
One has
Q = (307w e - [ w3t (w)awl
Here

[} - -
f (w) = [(w2 + 1)1/2 + wsina + cosal 1£w(w2 + 1) ?/2 + sina)
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Multiplying numerator and denominator by (w2 + 1)?/2

cosa) one obtains

- (wsina +

f'(w) = [wecosa - sina]-z[(w2 + 1)1./2 - (wsina + cosa)l
[w + (w2 + 1)?/zsina](w2 + 1)-1/2
f'(w) = [wcosa - sina]-l[cosa - (w2 + 1)~1/2]

Then, for j = 0, after dividing w by [wcosa - sinal

=172

] - -
wa.(w)dw - I[eosa v, tga(wcosa -~ sina) 1][cosa - [w2 +1) Jdw
and with Eq. (C.16)

' -1 2 1/2
Iwr (w)dw = w + tga log(wcosa - sina) - cos ~a log((w™ + 1). + W)

L]

1

-tga log[sin(G-a)(j + cos(e-a)) .1

here
0 = arctgw
Moreover, for j = ?. again, after carrying out the division
j wzf'(w)dw = I[wcos°?a + sina cos-za + tgza(wcosa - sina)-1]
[cosa - (w2 + 1)-?/2]dw

1 ]
I wzf wdw = (w2/2) + tga w + tgza log(wcosa - sina)

172

2 1)”2 - sina cos %a log((w2 + 1) + W)

- cos la(w? +

1

- tg%a loglsin(e-a)(1 + cos(6-a)) ']
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By substitution of w = v/ui one obtains

1/2

£ = log(kfu,|) + 108[((012 S ujcosa + vsina)/|uy|l

f = log(k(R + E~x))

I wf'(w)dw = v/u; + tga loglk(n-y)] - cos-1c log[(R+v)/|ui|]

- tga 10gl(n-y)(R + £-x)7']
I wr'(w)dw = v/uy - cos-?a log((R+v)/|u;|) + tga log(k(R + (E-x))

I wzf'(w)dw - (j/2)(v/u1)2 + tga(v/ui) - cos-1a(R/ui)
- sinacos %a logl(R+v)/|u |] + tg%a 1oglk(R + (£-x))]

Q, = (V/U - tga)log(k(R-X)}) - V/U + cos 'a log((R-V)/|U])

Q - (1/2) ((v/u)2 - tgaa)log(k(ﬂ-x)) + sina cos 2a log((R-V)/|U}|)
- (1/72) (V/0)? - tga(V/U) - cos™ 'a(R/U)}

and rewriting Eqs. (155)

123(x,¥,0) = P/ (0Pqy - (1/2)v0))

3

133(X,Y,a) = - (k2/6) {cosa U3qy + sina U3q,

- (1/3)cosa U3V - (1/6)sina UVZ)

Ig?(x,r,a) - (k2/6){+sina U3Q0 -~ cosa U3Q1

- (1/3)sina U2V + (1/6)cosa UVZ}
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SECTION VI
INTEGRATIONS WITH RESPECT TO X AND Y

With the formulae derived so far, the upwash at a given point
x,y can be evaluated in terms of the parameters that describe the
pressure distribution. One still has to carry out the integration
over the xy-elements. This can be done numerically or
analytically. The upwash has singularities as the point x,y
approaches the boundaries of the En-element or of its wake, and
special provisions must be made for the terms which give infinities
in the upwash. Aside from this one will obtain good results if one
uses a sufficiently large number of points xy.

The analytic procedure will be shown in this section. 1In a
numerical approach one will add all (or nearly all) contributions
to the upwash before the integrations are carried out; in an
analytic procedure one must keep them separate. This gives quite
lengthy 1lists of formulae.

The upwash formulae have arisen from contour integrals around
the En-element. The individual expressions are functions of
X = x—Ei, Y = y-n1 and a1'1+1; variables U and V are considered as
functions of X and ¥. The Ei's and ni's,are the coraers of the gn-
element, “i,i+l givesithe slope of the side of the En-element for
which the integration has been carried out. The general
expressions (for o # w/2) fail if one tries to substitute a = =n/2.
Separate formulae for a = xn/2 ha#e therefore been derived. The
limiting process a+n/2 is shown in Appendix F.

The contribution to the upwash for the form of the pressure
distribution assumed here is given by

P(xoY)Ioo(X.Y.G) + 01OI1O(X'YDQ) + 001101(Xpr0)»

but

p(x’y) - P(Eioni)*(X‘Ei)010*(n‘Yi)co1
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Thus, one has to evaluate expressions

p(gyn;) II Iyodxdy + Cqq II i1odxdy + co1jf'io1dxdy (156)

with

f = I + XI (157)

10 10 00

Ior = Ig1 * ¥igg

The integration is carried out over an xy-element. The
expressions I consists of a number of summands all of which, except
those that contain a factor log (k(R-X)) appear in the form,

G(x,y) = RYF(8) (158)

if written in polar coordinates R, 9. 1Inspecting the expressions
I1 one finds, that

mn
£ = (1{ +m+ n)
The integral over an xy-element then assumes the form
[[otx,yraxdy - [ R**1r.(0)dRde
Here the integration with respect to R can be carried out; the
contribution of the lower limit R = 0 vanishes because % > -2;
subsequently, d6 is expressed by d8 = (x dy - ydx)R_z. Therefore,

{ 6(x,y)dxdy - (2+2)7) 8 G(x,¥) (xdy-yax) (159)

where the integral on the right is taken along the contour of the
Xy-element.

The expression containing the factor log(k(R-X)) has the form

G(xoY) - S(XoY)log(k(R‘X))
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h
h where e
; 0o
b :‘-;
L] 9, s
g(x,y) = R'f(8)
R
Therefore, e
N
Y L Y
G(x,y) = R'f(8)[log(kR) + 1og((R-X)/R)] :
The second term in the bracket depends only upon 6. Therefore, -
é Ij G(x,y)dxdy = j[ R“"f(e)tlog((a—x)/n) + log(kR)]de
: ' ~1 L+2 R(8) L4+1 :
= (2+2)7" i £(8){[R""“[1og(R-X)/(R) + log(kR)]) - ( [ R""'dR)}de -
. 0 -
3 Hence, =
5 e
: [[ 6xiyraxay = (2+2)7f [6(x,¥) - (2+2)7 8(x,¥))(xdy-ydx)  (160) o
2 s
X We introduce an angle Y which gives the direction of one side of {;
the xy-element. e
X, =X =
. i 7i+1 -
. Y - —— 161 e
. te 1,1+1 Y1:Y1+1 ( ) Lo
; For integrations which are to be carried out along the sides of the
N xy-element we introduce coordinates p, q: v
; X =pcosY + qsinyY ; p=XcosY~-YasinyY .
P (162)
. Y=-psinY +qcos ¥Y; q=2XsinY + Y cos Y :
4 >
Along such a side p is constant; the variable of integration is q. ;E

The expressions U and V had been defined by
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X=Ucos a+Vsina ; U= Xcos a -~ Y sin a

(163)
Y = -Usina+Vcosa; V=Xsina+ Y cos a
For the integrations U and V are expressed by p and q
U=pecos § + qsiné ; p=Ucos § -~V sin §
(164)
V=-psiné§ + qecos § ; q=U=s8iné + V cos §
with
§ =Y - a (164a)

In the integration along the sides of the xy-elements expressions,
xdy-ydx will occur. One finds in general

XdY-YdX = pdq-qdp (165)

and since p = const
XdY-Ydx = pdgq

Now we summarize the results of Section V (i.e., the formulae
for the functions 166 and 1{6 and 101) in a form suitable for the
integration. For this purpose we introduce

log (k(R-X)) = log (R-X)/|Y|) + log (k|Y]|)

-
-
[ ]

log (R-V)/|U]|)

©
N
L}

-1
¢3 = X
(166)
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These expressions will be regarded as functions of p and q. The
expressions I°° are linear combinations of these functions with
cofficients wﬁich are homogeneous in U, V, X and Y. (The explicit
dependence upon X and~Y occurs because we have to form

i10 = Lig * XIpg and I5,= I, + XIgg-) These coefficients are
considered as scalar products, written as products of row matrices
and column matrices. The row matrix depends only upon a, the
column matrices are homogeneous functions in (U,V,X,Y). In the
following expressions, only those terms actually encéuntered in the
expressions I are included. We introduce

[w,1 = [U,x,¥3"
(167)
[w,] = [v?,uv,ux,0v1"

2x,uvx,u%y,uvy]*

[wy] - ud,v?v,uv?,u
The row matrices belonging to a function I;n(or E;n) are denoted by
¢ with the same indices as the function I and a third subscript
referring to the function ¢ to which they belong. Notice that the
coefficients occurring in a specific function I may be of different
degree, because the functions ¢J have different degrees in U and V.
Only some of the function ¢ will occur in a given expression I.

For Igo the matrix [wol and the vectors CgO"‘ are scalars.
These expressions are written down directly. One then obtains the
following list.

0 2 -1
I00 =B tga¢1 - cos a¢2

o = ¢ * Log,110% 10y + [oyg ,10u; 1o,

(168)

* Logg,30wpdey + Legg 10wy Joy

-0 0 0
Tor = Legy,qd0wydey + [egy pllw31ep
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: o
. 1 1 o
2 Ino = [cgp, 23wy 14, ry
-1 1 1 (168) E
n :I'.mn = [Cmn.zl[W2]¢2 + [Cmn.6][W1 ¢6] y M¥n = 1 (cont'd) 2
N 12, = [e2, ,10w,16, + [e2y ,1w, 10, + [c2y <Ilw,10s + [c2y 10w, ] 23
- 00 00,1219 * LCgp,21t¥W2 93 00,57t%21%5 00,6--%11% o
=2 2 -
| Ion = I:cmn.1][‘"3]4’1 3
-f s [e2  ,Ilwale, + [e2 . I(waléx + [e2 (I[w,lé 5 men = 1 o
. mn,2--"3-72 mn,5--"3-%5 mn,6--"2-%6 °’ NN
\ h_,‘\.
- The vectors [c], ordered according to their dimensions (which, of >
course, matches the dimension of the vectors (w]), are given by .
[°$0,1] - [—stinacos‘za. thga, 0] '_":',
0 2, 2 2 1 s
! [010’2] = [B"tg a, =B cOos "a, 0]
[081’1] = [-82003-10;, 0, thga]
[031’2] - [8%tga, 0, -8%cos™'al
1 =
[°oo.2] - [ik, 0, 0] (169)
[c10,6) = [(1k/2)sin a, 0O, O] | o
: [°(1)1.6] = [(ik/2)cos a, 0, 0]
. [ego, ) = [(k*/4)8%s1n a, 0, 0] ;
3 [°?o,3] - (8%cos”%a, 0, 0, 0] ;fé
: 1 ;I::
[ejg,2) = [-(ik/2)cos a, 0O, ik, 0] o
: Y
y [eoq ) = [(1k/2)sin a, 0, O, 1K] -
\ i
5 86 S




2
[000’1]

2

2
[000,5]

2
[010.6]

2
[001,6]

[-(k2/4)tga, (k2/4), 0, 0]

-2

(k2/4) (cos™ ' a-8"%cos a), 0, 0, 0]

[0, (k2/4)(c-372), 0, 0]

[(k2/6)((1/2)tga-2s'231na cosa), (k2/12)8 %sin a,
(k27478 %s1na,0]

[(k%/6)((1/2)-8"2(cos’a-sin’a),-(k°/2) 8 °sinacosa, O,
(k2/4)8 %s1ina]

[(k2/6)sin a (1+(1/2)t32a),—(k2/6)cos a, -(k2/12)sina.

- (k%/8)tga, k2/4, 0, 0] (169)
(cont'd)

[(k2/6) (= (1+(1/2)tg2a) +(1/2) 8”2 (3c0s%a~1),0,0,

(k2/4) (cos Ya-8"%cos a), 0, 0, 0]

[0, (k2/6) ((4/3)-C)cos a+(1/2)sinatga),
(k%/6) ((5/12)-(C/2))sin a, 0, (k2/4)(C~3/2), 0, 0]

[~(k2/12)sinatga, (k2/6)sin o, —(k2/12)cos a, 0, O,
-(K2/8)tg a, (K2/4)]

[-(k2/12)(tgu-38—281n0008a,0, o, 0, O,
-(k2/8)tg a, (K2/4)]

[0,(k%/6)(C~5/6)sin a, (k2/6)((5/12)-(C/2)cos a, O, O,
0, (k%/4)c-3/2)1

The factors tga and cos_?u which occur in some of the coefficients
are indications that some of these formulae are not applicable for
Q = "/2-

The results necessary for a = n/2 have been obtained by

direct computation in Section V. They are brought into a form
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W analogous to that for o # w/2.
The function ¢2 does not appear.
forms

-

The functions ¢ remains the same.
The vectors [wJ] assume different

N [w,] = [X,¥0%, [wpd" = 0x%,xx,¥21°, W) = Ix%r,xe%,v31°  (170)
&)
2
Then
10,(n/2) = (82,010,105 + 84,
I,o(n/2) = [0,82/21(w, 1¢,+[36%/2,0,010uy 105 + [38°/2,010w, 10y
19, (n/2) - [28°,010u, Jog + 2820
¥ 10o(n/2) = [0, -1k1[w, 1o,
' ) ) _ (171)
I}O(w/z) - [0, -1k, 0][w,J¢; *+ [0,-1k/2](w, Jog
I),(n/2) = [0,0, -1k/21[w,]e,
- 12 (7/2) = [0,-k2/4,010w,10, + [0, (k2/H)(1-C)1[w,1¢
: 00 ' 0dlwaley + L0, 2195
3 + [0, (kK2/4) (1-872) 10w, Jog
- 1,(w/2) = [-k%/6,0,(k%/12) (872
: + (1/2))10wz1e, + [7k?/72,-C/6,0,010w° 1oy
: + [0,k2(-(872/6)-(5/24),010w, 0
131(1/2) - [0,-k2/12.0][;3]¢1 + £0.0.k2(‘(C/12) + (5/18))][;3]¢5

AN SR

l‘l

+ [0,0,-(872/12) - (1/12) Wuyleg

So far this amounts only to repetitions in a different form
of the formulae of Section V.

the side of the xy-elements for the case a = 7/2 one must express

To carry out the integration along
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the functions U,V,X, and Y, occurring in the vectors [wJ], by p,
and q. Along the path of integration p is constant and q is the

7’

‘l "

»
gy

variable of integration.

X)X

i
'l

Therefore, one writes for a # n/2

e

(L0

[w,1 = M,Cp,ql”
[w,] = M,[p%,pa,q?1"
(w1 = M,0p3,p%0,037°

where M1, and M, are respectively 3 by 2, 4 by 3 and 7 by 4

2
matrices. The rows of the matrices are the coefficients obtained

by expressing, one element of the column matrix on the left in $§
terms of p and q. (One has for instance in ["2] vl - Ya

00326p2 + 2cos8sindpq + sin26q2) and one will indeed find in M2 as

first row: 00826. 2cosésiné, sin26. One obtains the following

. e e IR S > —w
) ' R
LT “". Lt e U

expressions.
) cos § sin § -
. M, = cos Y sin Y (172) fﬁ
-sin Y cos Y :E
B 2 5 7] .
cos™§ 2sindcosé sin™§ W
-
=
-sinécosé cos®s-3in’s sinécosé (173) i
2 cosbécosY sinédcosY+cosésinY sinésinY e
. |-sinscosY cosscosY-singsinY sinécosY =
3 ot L
: =
"




AVITS

™

R A i s e 3

AR s e e

ol

B S lliaie i

Y

ﬁﬂwoo@moowcﬂw
AsoOo9_urt
wN s
Autsgsooguts
AUTSQ _uTts
T wN L
S009UT
wm QuTtsS

gsod9 uts

wnsau

>mooAcmcﬁmuwumoov+>=ﬁummoow=ﬁm|
>m00wm00w:wu~+>=wmwﬂcﬁul
>=MmAoucﬂmlmmmoov+>u00mwooo=ﬁm
>=ﬂm@moo@:me+>moowN=ﬁm
mmOOwwcﬁumummuoo
mNmOOwcﬁmN+wm=wm|

9,UTS9800€

(174)

>wooomoowcﬁu|>:wmA»n:ﬁutwnmoovu

AS0D9_800+AUTS980OQUTSZ~

[4
r:amom00w=ﬁu|>wooAencwmlwmuoov

»:wwwNwoo+>m00wu000=ﬁmN

9 UTS+9, 80OQuUTSE-

€

mmmoo+wu09w~=wnml

9, 8009utsE

>=ﬁmemoom=ﬁmg
Autsg_soo-
[4
Asoogsoo9UTIS~
Agodg_so
wN o
wmooeacﬂm

SOOQUTS-
2 our

9,800

90




AD-A167 313 A SEMI-ANALYTICAL APPROACH TO THE INTEGRAL EQUATION CIN 2/%.
TERIIS 0? THE ACCE.. (U> DAYTON UNIY OH RESEARCH INST
UDERLEY NﬂR 86 UDR-TR-85-91 RFHRL-TR-BS-MJ
UNCLASSIFIED F33615-83-K 3207 G 20/4

b




Va

B £ A _sm ¥

Wl e & bn Y, Ty

T e

185 4k BT R e e

AN

et et

tyzeta

Xl

*iq L%

XXX

0%,

? et

g
Rt S

VU RO L C VAT PP P

- Y, ‘v Y RPN

ol oy o 0

N EEE

B OB op - 33
E EFEFEETINS

2
2
2
.

1.6
=

=y

1.25

CHART

MICROCOR

PIUAREIRIE. 1o YA

1
X
‘e
&

2

58

$
v
v

&



For a = ®/2 one sets :,
LS

w, = [M1lp,q’

w, = [M,1(p%,pq,q°1"

w3 = [M310p%,pa.q%1"

The rows of M1, MZ' and M3 are the coefficients of the development
2

of X, ¥, X5, XY etc. in terms of p and q. <3
cos Y sin Y
H1 - (175)
-8in Y cos Y
— 2 2 -
cos’ Y 2sinycosYy sin’y
- 2 2
M2 = -sinYcosY cos Y-sin'y sinycosy
2 2
L sin"Y -2sinYcosY cos Y
(175)
(cont'd)
cos3Y 3coszYsinY 3sinYeoszY sin3Y
—sinYcoszY eos3Y—Zsin2YcosY —sin3Y+23inYcoszY sinzYcosY
M, =
3 2 3 2 3 2 2
sin YcosY sin“Y-2s8inYcos Y cos~Y-23in YcosY sinycosY
L-sin3Y 3sin2YcosY -3sinYcoszY cos3Y
s
N
Y
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Take for
Then one has

Now consider some term of one function I;n .
instance a term containing the column matrix [w2].

A A A3 SR

l:c--.J

7.0

Jwydey = (Lo J0M,1) (067 ,pasa% "0y}

cend

e 2

The expression within the first brace on the right is a row vector
which depends solely on a and Y. The integration along a side of
the xy-element operates only on the elements of the vector

.

U
©
n
o

¢
(p%6.,pa0..a%¢.1 =« |0 p 0 qg
3rPaeya ey $3
0 1 Q¢J

Applying Eq. (129)~and observing that xdy-ydx = pdq
a contribution to I;n

one obtains as

p3 0 0 j ¢ 594
(1+mm)_1 0 p2 0 I qJ¢qu (176)
0 0 P I a%¢.dq
L. - b J -

For ¢, = log(k(R-X) one has to apply Eq. (130); the function g(xy)
is given by 1, q, and q2. One obtains

(i+m+n)”

o O v

........

o v O

o O O

p_— q p— ey
jo,dq 1 qu
jg¢1dq - (i+m+n) fadq (17)
quo dq qudq
1
. - L J e
92 .‘.'_'_:
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T Y V" W

(e) 2 +
We denote by wJ the vector [¢qu, q¢qu. q ¢qu...]
th

truncated after the ¢ tern.

The contribution to the integral over the xy-element of one
endpoint of one side of the xy-element with angle Y is denoted by
J**(a,Y), with the same indices as the functions I°° from which it

originates. Ultimately, J'° depends on X = xJ-Ei and Y = Yy ng

(besides a and Y). Then one has

Jag@®) = (eaene2) et I [ . 2 | Cvydiae2 (178)
p
L L
Jm.n is then the sum of all pertinent expressions Jm.nJ' (See

Eqs. (168) and (171).) The dimensions of the row matrix [w], the
diagonal matrix containing the powers of p and of the vector [vy.]
have not been shown. The subscript of w is found in Eq. (168).

The number of rows in w gives the dimension of the followihg square
matrix and of the vector [y]. For j = 1 one has

m+n+ 4
p

l I m m+n+{
mn,1 = [trmens2] “leg, o 1lwp,p.,) Pryned- C¥y ]

P

- (l*m+n02)-1[w5

(179)

As preparation for the evaluation of the vectors [¢y], we first
list some recurring auxiliary expressions. 1In the computation
they, and also the vector [v], can be evaluated immediately as
definite integrals between two limits for q.
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f R 'dq = -log (k(R-q))

I R 'qdq = R

! R-1q2dq - % ((Rq+p2 log(k(R-q))
[ R™'q3aq = RL(1/3)% - (2/3)p%)

(180)
[ " 'q"q - rCC1/4)q3 - (3/8)0%a] - (3/8)p" log(k(R-q)

| Raq - % (Rq - p° log(k(R-V))

j Rqdq = 1/3 R3
I qudq - R[(I/H)q3 + (1/8)p2q] + 1/8 pu log(k(R-V))

d dq -1 S -
| m - | Wrgoosvopstawy - p 1o8(Y/(R*X)) = + & log(R-X)/Y)

The last relation follows from Eq. (E.2).

The general formula for I qm¢1dq is Eq. (E.3). Here we
specialize )

[ #;da = {(a - ptaMlog(k(R-X)) - peos™'y [ R 'dq - al

I ¢,9dq - % {(q2 - (pthz)log(k(R-X)) - pcos-jY j R-1(q+(pth))dq
-(q%/2) - (ptg¥)ql

| #;0%da = (1/3){(a® - (ptgm 1og(k(R-X))
- peos™ Ty [ R™'(q% + (ptav)q + (ptgY)2)dgq (181)
- (q3/3) - (pts¥)(q2/2) - (ptsv)z}

f ¢,83dq = (1783 {Ca" - (prav)'1og(k(R-X))
' - pcos-1Y I R'j(q3 + (pth)q2 + (pth)zq + (pth)3)dq
- (qu/u) - ptsY(q3/3) - (ptSY)Z(QZIZ) - (ptsY)3q}
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From the factor of log (k(R-X)), that is from qn-(pth)n, one can

split off a factor (q-ptgYy) = Ycos‘1Y. Furthermore from Eqs. (E.d)
) I $,dq = {(q - (-pcotés)log((R-V)/U) + psin-16 I R-1dq}
‘ I 9,9dq = (1/2){(q2 - (-pcot&)z)los((R-V)/U)
. p~.=;1n'1 s R“(q + (-pecoté)dq} (182)
[ 0,0°dq = (1/3){(a> - (-peots)})10g((R-V)/U)
i . + psin'1 8 I R'1(q2 + (-pcoté)q + (-pcota)qul

] ¢éq3dq - (?/u){(qu - (‘pcoté)u)log(R-V)/U)
3

+ psin‘?c I R-1(q + (-pcotc)q2 + (-pcota)zq

+ (-pcot6)3)dq}

From qn - (-pcots)n a factor Q + pcos§ = Usin-16 can be split off.

I ¢;dq = cos—lYlog(kY)
[ #304a - cos™ 'Yl q+(ptgY)log(kY)] (183)

2 -1 2 2
’ 939 dq = cos . Y[(q/2)+(ptgY)q+(ptgY) log(kY)]

3 -1 2 2 3
] $397dq = cos “Y[(a/3)+(ptgY)(q~/2)+(ptgY) "q+(ptgY)~log(k(Y))]
I 9,49 = I R¥‘?dq - pzcos-ZY ] R_?Y-?dq*cos‘1Y[I % dq*(pth)j %3]
I ¢,adq = p3t:chos-2 R-?X-?dq*cos—?Y I(R-1q2*(pth)R-1q)dq

+ pleos3y I R 'dq

n 1 n+1
| ¢5a7da = g a7 (n =0, 1, 2, 3)
| 96a"da = [ q"Rdq, n =0, 1, 2
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One obviously needs special formulae in those integrals where
cos 'a and tga or sin”'6 and cos § occur, if respectively a+%/2 or
§+0. They are found by direct integration. For Y = x/2 one has

Q =X, p=-Y. Then

1

[ ¢a%a = [ X" Log(k(R-X))dx = =T [x“+1 log(k(R-X)) + [ x™* R"dx]

The integrals are immediately found from Eqs. (180) by replacing q
by X, and p by -y. Therefore, for Y = n/2

¢,dq X log(k(R-X) + R

¢;qdq 1/2{[108(k(R-X)) + 3 (RX + Ylog(k(R-X))}

#,0%dq = (1/3) {[x310g(k(R-X)) + (1/3)R(X?-2Y?)} (184)

175 (X Log (K(R-X)) +R(1/8)X3- (3/8)XY%)-(3/8)Y " 1og(k (R-X))}

yo! f Xax = Y (ae) ™Y, n-o, 1, 2, 3.

n
03q dq

¢uqndy y~! f x"Rdx

J

J

J

j ¢,q3dq
J

J

[ o4ay « ¥ L(RX-Y1og(k(R-X))]
[ oyady = Y (1/3)R

The 1imit § = 0 requires a revision of the integrals involving ¢5.
Then p = U, q = V, and one obtains

| a"108(R-V/|U|)aq = [ V'log((R-V)/U)av

1

- (n+1) " V™ N 10g(R-V) /U) + | vi* 1 a lay

I ¢,dqg = [Vlog(R-V/U) + R (185)

[ ao,dq - (1/72) (v210g((R-V)/U) + 1/2((RV + U°log((R-V)/Y)}
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[ a®,dq = (173) (V2 10g(R-V)/U) + RK((1/3)¥° - (2/3)0%))  (185)
(cont'd)

[ a30,da = (1/4) (v'10g((R-V)/U) + R((1/0)V3
- 3/8v2u-(3/8)U"18((R-V) /1) )
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SECTION VII b

SINGULARITIES OF THE UPWASH FIELD .

&

In carrying out the integrations over X and Y one must be %.

aware of the singularities in the upwash field and how different “g
¢

terms contribute to them. Consider a single &n-element. .
Singularities will probably occur at its boundaries and at the !E
boundaries of the wake and at the wake of points of the contour of . 3{
the gn-element for which the contour is discontinuous. (see e
Figs. 3). The wake has already been studied in Section III, but *‘
one must ask how these wake singularities express themselves by the !{
formulae found in Section V. byt
Because of the denominator Y the strongest singularities are ;;
caused by the functions ¢; and ¢,. Assume first that Ap 1is >
constant throughout the element, then only I00 will contain ¢3 and }g
¢y One has as the only contribution i
0 2.1 2 -1 2 172 ni
Ino(7/2) = BSY ' (x+R) = 82(¥-n) 7 [(x-£ )+ ((x-£) 2+ (y-n)?) /2]
For the triangular element, shown in Fig. 3, this must be fi
evaluated for the side 2,3. To recognize the analytic behavior, we ;;
rewrite this expression. One has for x < 53 <& -
1(x+R) = Y/(R-X) = Y/2R f%

Here the flow field does not have a singularity. One has for Eﬁ
-

X > E2 > E3

Y (X+R) - 1’1(2x + Y(R-X)) = 2x31‘1 for Y small

This displays the singularity caused by one of the limits Ei -"q
ni. We know from Section III, that except for a factor exp(ikx), o
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the singularity is independent of x. This is seen if one
substitutes the limits (52 and 53). i.e. replaces X by x-E, and
x-53. One then obtains

217 [(x-£5) - (x-£3)] = 2Y ' (§,-E5)

The situation is more complicated if AS is linear in § and n.
The contribution of ¢3 and ¢y then appear

in Igo (n/2), namely, 82 Y-?(X+R)
0 2 -1
in I3, (n/2), namely, (87/2)XY " (X+R)
and in I?o (), namely, B2Y '(cos 2aU® + cos”'aUR)

The last term is rewritten for the vicinity of Y = 0. There
U = X cosa. Therefore, except for terms of higher order in Y

82Y"V(cos 2au? + cos 'aUR) ~ B%Y 'X(X+R)

As before, no singularities will be encountered for x < 52 < 53.
In the following discussion for x > 52 > 53 we retain only the
singular parts.

82y (x+R)» 28%¢ 'x

1 2,~1.,2

8272y 1x(x+Rr)» 8%y 'x

82Y~1 (cos™2at® + cos” 'aUR)~ 28°%Y 'x

Now choose a function AB(E,n). whose integral, taken for
n = n, = n3 from 52 to 53. is zero. Such a function should not
generate a wake singularity: :

8p(£,ny) = ¢ ((6-(6,+E3)/2)
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In order to evaluate the upwash, one must first evaluate
8p(x,y) = 8p(x,n,) = Cqo(x-(Ey+E3)/2)

Then one forms

Aﬁ(x.y)lgo + c101?0

The integrals must be formed around the entire En-element. Only
the limits due to the points 2 and 3 will contribute to the
singularity. Point 2 is the upper limit for the integration along
the side 1,2 and the lower limit for the side 2,3. Point 3 is the
upper limit for the integration along 2,3 and the lower limit for
the integration along 3,1. One obtains the following contributions

from 13 (n/2) 82Y 1oy 20x-(£,+€5)/2) 1((x-E5) = (x-E,))
from 10 (n/2) 8% Yo, oLix-£0% = (x-8,)%)

from Igo(a12) BZY—1c102(x—g2)2

from I?O(a31) -BZY-10102(x-£3)2

The sum of these expressions cancels, indeed.

In the analytic integration over x and Y, ¢3 and ¢u give
separate formulae. The Y-1 singula.ity (which appears in the
individual expression) becomes a log Y singularity after the
integration. If Y = 0 is one of the iimits of integration, then
one obtains infinity. It is true that these infinities will always
cancel. This happens for points upstream of the En-element because
no singularities are present, for wake points if AB is continuous

because of the contribution of an adjacent En-element; for wake ij
points if AB is discontinuous because the region of integration %}
will then extend across the wake and the Y-l singularity changes N

100 -

a




Tkiwtn.titihi\ BRI AP ol Sl A e D Aara Ao AR e gt 3 e Rt i g bR B Ten ge a0 T rag- e

sign as one crosses the wake. In any case the formulae are needed
for the numerical procedure which show the singularity separately.

They will be derived later.

For elements where o # 7/2 for all sides, no Y-‘1

singularities will appear. As mentioned above, this is of interest
if one works with elements in which AB is constant for then one can
choose the individual elements as pressure and upwash areas.

Weaker singularities occur in ¢, and ¢3. In ¢, = log(k(R-X)) 'fi
the argument of logarithm becomes zero for Y = 0 and X > 0. To {
. display the singularity one writes ii.
2 -1 2 i
¢, = log(k(R-X) = logkY (R+X) = log(kY ) - log(R+X) VI
) BN
In some of the expressions ¢1 is multiplied by powers of Y, which E:'
makes the singularity less pronounced. Upon integration with e
respect to x and y one obtains finite quantities. One does not
depend upon cancellation of different terms, but one must make
sure, that the formulae for the integrals do not, inadvertantly, -
give the difference beween two infinite quantities. R
For 1°. (w/2), the expression ¢, does not introduce ff?
singularities except at the boundary of the £n element. This is %jﬂ
obvious for points ¥ = 0 if x < 53 < 53. For x > 52 >g3 one ‘x;
obtains after substitution of the limits :f}
n 2 n n 2 Ry
[Y log(kY™) - Y log(2(x-£3))] - [¥ log(kY™) - log(2(x-£,))]
The logarithmic terms cancel. RN
However, the same argument cannot be made for gg < x < 52.
The expression due to 52 does not generate a singuiarity, the :5j

singularity of the expression due to 53 remains uncompensated.
5 o
23 . . . ] X e

In Ijg (m/2), the function ¢, is multiplied by X, ete. BCIC
Then the singularity will not cancel for x > &5 2 53; one has a oy
logarithmic contribution to the wake singularity. This is to be }:f
18
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2
expected if one examines the portion K1 of the kernel K; I.? arises
from the lowest order term in k that contains the logarithm.

In the expressions for a # n/2, the function ¢1 is
encountered in the following forms

. 0 2

in IOO (a) B tga¢,

in I?g (a) —ezsinacos—zaU¢1,
and in Igf (a) ~Bzcos‘1aU¢1

Only an integration limit for which Y = 0 will contribute to the
singular part. In general, there is no second compensatory term.
These are the terms responsible for the wake singularities for
elements sketched in Fig. 3b.

The terms ¢, = log((R-V)/U) occur in integrations along lines
U = const. They occur multiplied by different powers of U. Terms
gh log U can be considered as constants of integration which cancel
(even for n = 0 and in the limit U+0). Therefore, it suffices if
we discuss expression Un log (R-V). One best returns to the
original coordinates u = -U, v = -V. For a point to the line
U = 0, one must evaluate (-U)n[log(R2+v2)—log(R1+v1)]. If the
point (x,y) lies close to the line u = const and v > v, > Vl’ then

R2+v2 = 2R2; R1+v1 = 2R1 the tergs are not singular. For v < vy

u
R—v1
log u2 is canceled by the contribution of point 2. For v1< v < Voo

one writes 1og(R1+v1) = log( ), if v < v, the singular term

this cancellation does not occur. The terms ¢2 express
singularities in the upwash along element sides for which a = w/2.

According to these considerations one must examine how the
formulae for the integrals derived from ¢1 (combined into a vectior
¢1) appear in the limit Y-+0, and how the formulae for ¢, appear in
the limit U = 0. One should always obtain finite expressions.

Next, consider ¢, in the case a # m/2, & # w/2. The crigin
1

lies at a point gini; one integrates along a line p = const from qj
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to qj+1. Singularities in the vector y arise if one of the
endpoints of the interval of integration lies at Y = O. The
components of the vector y; are the integrals shown in Eq. (181).
The term which becomes singular for Y = 0 is log(k(R-X), it behaves
as log Y). The factor qn - (pth)n of this term vanishes as

(Ycos™ 'Y). The term is simply disregarded if Y = O at one of the
limits. For Y = w/2, one has p = -Y. The expressions ¢1 are then
found in Egs. (184). They do not vanish. But the element of the
diagonal matrix with powers of p = -Y now vanish. Again one simply
disregards this limit.

- Similar considerations apply to ¢, (and therefore wz). For
& # 0 the singular element log (R-V)/U in Eqs. (182) vanishes if v
= 0 at one of the limits. For 6 # 0, p = u, and the diagonal
matrix with elements given by powers of p vanishes.

ﬁ Now we identify the singularities due to ¢3 = Y—1 and

¢M = RY-1 which appear after the integration with respect to x and
f y has been carried out.

We begin with cases a = ©w/2.

Then one has 82X and 32R¢u as contributions to Ioo(w/2);
and (332/2)x2¢3 and (38 /2)XR¢H as contributions to f?o(w/Z).

Discussion for ¢3.
Case Y = 7/2.

One remembers that the areas of integration over X and y are
triangles. Therefore one forms

-Ij X¢,dxdy = —j[ xy~ Vaxdy

3ot I
- -1 Xdx = -(1/8)%%
7 |
3 J

103




%
]
:
I“.

S

‘S

The negative sign arises because the convention that one integrates
around the xy-element in the counterclockwise sense. If the
integration extends from point j to point j+1 in Fig. 14 then the

g element lies above the line j, j+!1 and the contribution of the
> triangle must be subtracted. In the notation of Eq. (178) one then
M .

has

0 2 2
J00,3 (n/2, ®/2) = -(B /4)X

Similarly

0

20 5 (/2 w/2) - -(8%/6)%3

In spite of the fact that the area of the triangle tends to zero,
the integral over the triangle is finite. The same behavior will
be found for J u(1r/2,1r/2).

For ¢3 and Y 4 w/2 one has

0
0

1

2 -
00,32, Y) = 8°(p/2) j XY 'dq

= Bz(p/z)f(qsiné + pcosé)(qcosés - psiné)-1dq

Hence,

0

J00,

3(11/2,Y) - (82/2)[thpq + pzcos-zYlog(k|Y|)]
If one of the 1limits of integration should be Y = 0, then the last
term gives a logarithmic singularity. For y = 0, one has pzcos~2Y
- x2 + 0(y). Thus one can write

0

Ja0,3(M/2:7) = (82/2)[thpq L (X2 . 0(Y)log(k|Yj))
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This displays the singularity in terms of X and Y. Of course, in
all applications these infinities must ultimately cancel. The only
purpose to retain them in the computations as separate terms is to
provide a check.

For the contribution of ¢3 to J?O(W/Z.Y) one must evaluate

0 2 2,1
30,3(m72, 1) = (38%/2)(p/3) [ X°t 'dq

2Yq2 + 2sinYcosYpq + cosszz)dq

- (38%/2) (p/3) | ¢5(s1n
The individual integrals are found in Eq. (183). Singularities
arise because of the factor log (kY) if one of the limits is Y = O.
Collecting the terms contributing to the singularity one obtains

(332/2)(p3/3)cos-1Y[sin2Ytng + 2sinYcosYtgYy + coszY)log(ky)
- (382/2) (p3/3)cosy(tgy + 2tg2¥+1) = (382/2)(1/3) (p/cosY) log(kY)

Thus, substituting the remaining terms of Eqs. (183)

O

10 3(11/2 Y) =

(82/2) {(sinvtg(Y/2)pq? + p2qsiny(2 + tg2Y) + (X3 + 0(Y))log(k/Y)}

E This terminates the evaluation of I“’3 for « = /2. (The results
i can be summarized by stating that it suffices that one disregards

the singular terms, provided of course, that one uses analytical
F expressions in which they cancel on theoretical grounds.)

Now we discuss the corresponding terms for ¢y for a = n/2

Jgo y(1/2,172) - -82/2) [ Rax - ~(82/4)[RX-Y210g (K (R-X)]

For Y » 0, X > 0, we write logk(R-X) = logkYz-log(R+X). For Y = 0,
the expression remains finite (although the area of the triangle is
zero) one obtains for Y = n/2
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X 390, 4(n/2,1/2) = <(82/RX  for ¥ - O,
4

i : 2

" I y(n/2),m/2) = -(38 /72)(1/3) I XRdX
v ’

&

L'.

E J?O'“(nxz,n/z) - - (8°/6)R3

. For Y &/ n/2, one has to evaluate

7

0

Joo,y = (P/2) [4yda

20,
TN

3
.

This is one of the expression Eq. (183). The individual terms on

the right of Eq. (183) are found 1n>Eq. (180). After substitution
one obtains

X
-
P_j.

3oy (1/2,7) =
- (82/2){pzcos—ZYlog((R-x)/Y) + cos-lY[pR - pzthlogk(R-q)]}
2 2 -1 2
= (B5/2) {((X“+0(Y))(log(R-X)-1logkY)+cos _Y[pR-p tgYlog(k(R-q)]}
= (82/2){(x2+o(¥))(1og(ky)—1og(k(n+x)+cos'1Y[pR-pztgvlog(k(R-q)]}

The first version is the general formula, the second version
dislays the singularity for X < 0, and the third version the
singularity of X > 0. The last term is singular for p = 0, but
then it vanishes because of the factor p2. Next we evaluate

0
10,4

J (n/2,7)

Next we evaluate

0

0,5(7/2, 1) = (38%/2)(p/3) [ Xoyda

.o .
o
"'ﬂ' DA
AR L&
. [T TSR B R | 3

Yt
LA
'y %a %

= (82/2)[cosYp2 I ¢ydq + sinvp I q¢,dql

..
AALK

B0 s
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Here expressions from Eq. (183) are substituted:
J.‘O'u(“/z.Y).

1dy + ptgY j R-1q2dq + pzcos-ZY I R_1qdq

- (8%2/2) (p cos™3v f R™Ty”

+ pltgy(1 + cos-zY)j R-1dq}
Only the first term within the braces has a denominator Y, which
will give a singularity for Y = 0. Substituting expressions from
Eq. (180) one obtains

' 2 3 -3 2
0 u(n/Z,B) = 87/2{p”cos “Ylog(R-X)/Y) + (ptgY/2)(Rq+p log(k(R-q))

?

+ pzcos-avﬂ - p3th(l + cos-ZY)log(kR-q))}

The singularity for Y = 0 is displayed by writing fﬁu

p3cos-2Y - x3 4 o(y)

Then

p3cos—3Ylog(R-X/Y) = (X3 + 0(Y)(1og(k(R-X) - log(kY))

- (X3 + 0(Y)(-log(k(R+X) + log(k/Y)

The first form is suitable if X < 0, the second if X > 0.
For a # 7/2 one finds terms with ¢3 and ¢u in I?O’ namely

-1 1

Bzcos—za U2¢3 = 32008-20 uy and Bzcos-1a U¢u - Bzcos—la URY
For Y = n/2, one has

~
§ = Y-a = (7/2 - a) o
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and
p=-Y¥Y,q-=1X
Then
U= -Y sina + X cosa
U2 - stinzu ~ 2XY sina cosa + chosza
Hence

2 - 2
J?0,3(°'“/2) = B cos 2a(p/3) I U o3dq

2

= (82/3)cos_2c[—sin ay? f dx + ZsinaeosaYI Xdx - coszaI x2dx

J?o 3(a.w/2) - (82/3)[-t82aY2X + tgaYXz - (cosza/3)x3]

Here no singularity for Y = 0 occurs; the expression does not
vanish, even though the area of the triangle from which it arises
is zero.

Next we discuss

(a,nw/2)

0 2 -1
J10,u (87/3)p cos a Usydq

(8%/3)cos” 'al[Ysina IRdX-cosa IRde]

J?o,u(“-“/z) (8/3) (((tga)/2)Y[RX - Ylog(k(R-X)I- 15 R}

The singularity which is present for X > 0, is of the character Y3

log Y. For Y = 0 one obtains

0 22 0803
J10'u(a’“/2) - (B /9)R
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For Y /¢ =w/2 one has jﬁ
A
0 2 -2 2 3
' Jipla,Y) = 8%(p/3)cos “a JU ¢3dq 5
Y , "
= Bz(p/3)cos-za {00326 p2 f ¢3dq + 2sindcoss p I ¢34dq y}j
’ o
2 2 _W
: + sin®$ ! 39 dq} s
L
N Here expressions from Eq. (183) are substituted. We collect terms :
K of the same character; the terms logk(Y) is of particular interest i
: 0 o
: J10.3(Q’Y) ':"
; (62/3)cos-zacos-?Y{(2sin6c036 + sinzstgc)pzq + ((sin26)/2)pq2 :;:
3
3 2 2 2 L
+ p°(cos“s + 2sinécosétgY + sin"stg Y)log(kY)} Ry
A
r,:.:
The factor of log kY simplifies to §3
2 p3coszd(1 + 2tgstgy + tgsztng) - cos®s(1 + tgsth)2 ig
\ - p3COS—2YCOS(Y-6)2 &5
" But :E:
._. N
:: Y - 5 = Q :‘t\
% Thus one finds R
M -
F 0 2 -2 -1 2
: 950 3(a,Y) = (B"73){cos “"acos . Y[sinécosé(2 + tgdtgdlp q
1] -
+ (1/2)sin%6pq®] + p3cos 3vlog(kY)}
One has p3cos‘3Y = X3 + 0(Y).

This shows the character of the singular term; for Y » 0 it behaves
as (8%/3)X31og(kY).
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Consider finally

0

J10,u(°’7) = Bzcos—1a(p/3) I U¢udq

4.4 R S A YR R

- Bzcos'Ia(p/3)[coss p I ¢,dq + sins f q¢,dq]

Here the expressions from Eq. (183) are substituted. One then

k obtains
i 395 ylan) = (82/3)c08™ atp cos > ¥(cos(s-1) [ Ry dq
7 + pzcos‘zYcos(é—u) I qR-ldq
3 -3 -1
+ p°cos “ycosé(sinycosY + 1) I R -dq

+ cos™ 'y siné p I R™'q%dq}

Here expressions from Eq. (180) and 6-Y = a are substituted

0

J1o,u(°'Y) - (82/3){p3cos-3

Ylog(R-X)/Y)]

3 3

+ pzcos-zYR-p cos 'acos” Ycosé(sinYcosY+1)log(k(R-q))

+ (1/2)cos‘1acos-1Ysiné[qu + palog(k(R—q))]}

Here again p3cos_3Y = x3 + 0(Y), so that the singular term due to

log(R-X/Y) is readily recognized.
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SECTION VIII
CONCLUDING SURVEY

The sheer vclume of details and formulae may make it
difficult to extract from this report the information needed for
numerical work. We describe here the main concepts, the
definitions and 1ist the important equations.

One observes that the formulae become longer (although not
really more complex) as one takes higher terms in the development
with respect to the reduced frequency into account. But this
applies only if the xy-element coincides with, or lies in, the
vicinity of the En-element. For elements at a distance the
different terms of the development with respect to frequency are
lumped together, one obtains rather smooth functions, the
integrations are carried out numerically and this difficulty does
not arise. Ir any case one must choose a subdivision of the wing
into elements so that the linear elemental pressure distribution
give a sufficient accuracy. This implies that for an xy-element in
the neighborhood of an gn-element the terms of low order in the
development with respect to the reduced frequency will suffice.
Most likely the powers zero and one will be enough. (For elements
at a greater distance one should go further in the development.
But we mentioned already that then the integrations can be carried
out without difficulty.)

The overall arrangement of the computation is symbeclized by
EqQ. (7). The definitions of the "housekeeping" matrices M(1) and
M(3) are given in the paragraph preceding Eq. (7). An element of
the matrix M(Z) gives the average upwash in some xy-el=ment due ‘o
one elemental pressure distribution. (In each triangular En-

element there are three elemental pressure distributions.)

The elemental pressure distributions are expressed in teras
of coordinates £ and n; the coordinates within an upwash element
are x and y. The pressure difference between the upper and lower
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side of the wing is denoted by Ap(&,n), to make analytical
integrations possible one must consider Zp(E.n) = Ap(E,n)exp{ikg)
as unknown functions (Eq. (6)).

oo

To each triangular element there belong three elemental shape :i

functions, shown in Eq. (11). They are linear functions which f&

assume the value one at the corner of the triangle with subscript j =

and zero at the other corners. :f:

For an xy-element at a sufficient distance from the En- #;

element one substitutes the expressions Eq. (11) into Eq. (10) and f*

carries out the integrations numerically. To make analytical . éi

integrations feasible Eq. (10) contains a weight factor exp(ikx). if

For xy-elements at a distance from the En-element but within fﬁ

its wake or close to it, one applies the procedure given by gg

Eqs. (20) through (31) (if one restricts oneself to the powers zero 4%

: and one of the reduced frequency and by Eqs. (20) through (42) for 3}
. the general case). In the equations (without number) starting ;E
after Eq. (42) and proceeding to the end of the section the '1:

procedure is specialized to triangular elements and carried out {3
analytically. One stops with the evaluation of fu if the powers of 5;:

the reduced frequency are only zero and one. e

Before the integrals of the upwash over an xy-element close f;

to a gn-element are evaluated, we have derived formulae for the -

upwash at a given fixed point x,y. These results are of an ;i
intermediate nature. There is no need to evaluate these formulae f:'
unless one wants to show the details of the upwash distribution due g:'
to one elemental pressure distribution. We describe these results k|

because they form an important part of the overall procedure. The :

pressure difference Ap are written in the form Eq. (51;. The -

functions cmn(x,y) are expressed in terms of the elemcntal prescure f;
distribution given by Eq. (11). (In practice only the combinetions >
N (0,0), (1,0), and (0,1) for (m,n) are used.) j;;
: If one chooses to work only with (m,n) = (0,0), then one ia: Ef
elements with constant Bp, and if it is not possiblz to maintain Xﬁ

continuity as one moves from one element to its neighbor. Ther (f

........................................................
.......................................
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the gn-element has a side parallel to the £ axis, one has at the
wake line originating at this side (n-Y)_1 singularity in the
upwash. To obtain finite averages for the upwash, the upwash areas
(over which the averages are formed) must overlap these wake lines.
If none of the sides of the En-element is parallel to the & axis,
then the singularities are of the character log(n-y) and the
average remains finite without an overlap. One can then develop a
method in which the pressure and upwash areas coincide with the
pressure elements.

The general procedure obtained after a limiting process z-+0
has been carried out, is summarized in the remarks following
Eq. (88a). The casem = 0, n = 0 is exceptional, the procedure is
given by Eq. (88). To obtain the upwash at a fixed point xy, one
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has to carry out integrations around the contour of the En-element, ﬁﬁf

separately for each individual term in the representation for the .:?

pressure. S

[

Carrying out the procedure one obtains definite integral over e

the sides of the triangle, denoted by i’i+1i; o+ The subscripts N
L] -

(here m and n) refer to the term in the development of Ap, the DAL

superscripts on the left (here i and i+1) refer to the numbering of :ﬂf\

the corners of the gn-element. The indefinite integral is denoted ﬁ{}

\('u'.

by I; n+ The slope of the side enters by Eq. (107) LA

t8ay a1 = (Bgaq 7 B/ (ngy = my) T

Y

The indefinite integral depends upon ot

X = x-¢ -

Y = y-n R

and ;-{
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Furthermore, we have used

2,172

)

U= X cosa -~ Y sina

R= (X2 + Y

V = X sina - Y cosa

(see Eq. (140)).

The indefinite integrals are denoted by Iélg (X,Y,a). Here the

limits of § and n for the individual sides of the triangle must be

substituted. One obtains a number of functions, that depend upon
% o

X Ei’ n—yi, and ai,i+1' The expression I m,n are divided because

of the different analytical characters of the expressions, for

instance

0 01 02
100 = Too * Ioo

The results are found in Eqs. (114) through (120) for a = /2, and

Egqs. (141), (147) through (155).

Formulae for the integration with respect to x and y are
The integrals appear now a3 contour

A summary of the results before
(167), (168), and (169), they are

derived in Section VI.
integrals around the xy-element.

this integration is found in Eqs.
a repetition in a more condensed form of the equations listed

above, except for the introduction of 110 and i,., delined by

Eq. (157).
In the integration the slope of the sides of the xy-element

appears given by Eq. (161)

X, - X

i i+1
tga . - ————
LAt ¥y = Yy

'''''''''''



The angle o defined for the sides of the En-element appears again.
We have furthermore (Eq. (164a))

Dl Rt Tl N '

§ =Y - a

P

s

Regarding this last phase of the computation we refer to the ;::

P

description given in Section VI.

r
.
X

In evaluating these expressions one will find infinities. et
These and other singularities are discussed in Section VII.
Critical, of course, are the lines of the wake that start at the
corners of the gn-elements, but also, although the singularities
are less pronounced, the sides of the En-triangle and their
- straight extensions through the gn-plane. For methods in which the
effect of such infinities cancel on theoretical grounds, they can N
simply be disregarded, when they appear during the computations. '
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APPENDIX A
THE BASIC EQUATION

The classical equation for oscillatory flows is rederived
here as a convenlence to the nonspecialist who would like to
know how the eguation comes about, but does not want to go back

to the original literature.

The formulation uses the accleration potential. Usually,
and also in the present case, the acceleration potential is used
in connection with the linearized flow equatlons. But according
to an observation (which was made to the author by Ernst Hoelder)
it has also a meaning in a nonlinearized isentropic flow; it is
given by the negative enthalpy of the particle.

The following derivation is made for the linearized flow
equatlion. Denoting by p, p, and ¢, respectively, the deviation
of the pressure from the free stream pressure, the free stream
density, and the acceleration potentlal, one has

p = -p¥ (A.1)

In a linearized flow with free stream velocity U, and velocity
components U + u, v, and w in the x, y, and z directions¥,
respectively, of a Cartesian system of coordinates, one has the

components of the acceleration

(3u/3t) + U(3u/3x),
(3v/3t) + U(3v/3x),

(3w/3t) + U(dw/dx).

Expressed in terms of a velocity potential, ¢, the velocity
components are

*

for simplicity we use iIn this Appendix x, y, z, etc., before a
Frandtl-Glauert coordinate transformation has been carried out
although in the main body of the report the notation X, ¥, Z 1is used.




u = (3¢/9x), v = 3¢/3y, and w = 3¢/9x

Therefore,

- 9% )
“"61:*”5%

The velocity potential is then expressed in terms of an acceleration
potential y(x,y,z,t)

1 g

$(x,y,2,8) = U™ | y(E,y,2,t + =5)aE

8

(The velocity potential will be used in an intermediate step to
evaluate the upwash due to a given acceleration potential.) One
has 1ndeed

p'e
U(3¢/9x) = P(x,¥,2,t) - 1 f wt(g,y,z,t + Eﬁﬁ)dg
= P(x,y,2z,t) - a¢/§t
Choosing
0(X,¥52,t) = &(x,y,z)exp(ivt)
V(x,y,2,t) = G(X,y,z)exp(ivt)

One obtains

X
$(x,y,z) = U—l f w(&,y,z)exp(ivéﬁi)dg

¢ and ¢y are made dimensionless with UL and U2, respectively, where
L 1s some characteristic length.
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Then one has

5(2L,§L,EL) = UL}

(X,¥,2)
-~ o (4.2)
y(xL,yL,zL) = U"¥(x,y,2) R
e ‘:.-:'::
, L
' and one obtains Ry
- (S
X w,
B(x,y,2) = [ B(E,§,D)exp(1k(E-8))aE (a.3) =
One has, from Eq. (A.1l) N
- 2.
* p=-pU ¢
" Setting
- 2
d p = Ap/(pU~/2) (A.4)
one obtains
P =-20 (A.5)

From now on the bars will be omitted.

¢ and ¢ satisfy the same linearized differential equation.
- Originally,
2 2U 1 -
(1 - M)y, + Yoy ¥ ¥y - 2 e ™ 2 Yoo = O (A.6)
(where a 1is the free stream velocity of sound and M = U/a is the
Mach number). Introducing nondimensional quantities orie obtains
for the oscillatory case (after omission of the bars)

(1 - Mz)wxx + + o, - 20K M2 v, + K2M2y = 0 (A.7)
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) Let ;H
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3 ~ 3
1 - M2 - B2
~y
. oYy
u\ r2 = y2 + Z2 (A.8) 'n"g_
Rt
. R? = x° + g°r?
A solution of Eq. (A.7) for outgoing waves which has an R'l ?ﬂ
singularity at the origin is given by Eﬁ
[0
s
- -1 1kM
wsource = - R exp[82 (Mx - Rﬂ (A.9) !;
2 Eq. (A.9) can be verified by substitution into Eq. (A.7). If Eﬁi
f the expression would be used for the potential it would represent ﬂﬁ
an oscillating source. The expression for y to be used here is ~3
given by oGt
2
Vo= -3 urce’ 2 iz
One has
v = - 2(82 + HLE) exp[2ux - m)) (A.10)
o —3 R P 2 X - -
-, R B
. The potential pertaining to it is obtained from Eq. (A.3)
X « ,
Mik
¢(x,y,z) = -z I [ > g + ]
2 2_2
JLe? + 82r?)372 0 (g2 4 p2p2)1/2
exp[—i—ém (Mg - (g2 + 8°r?)1/2) +1k(£—X)JdE
B
; or using the first of Egs. (A.8)
. . )
8 : Mik hand
> ¢(x,y,2) = -z exp(-ikx) I [ 5 + }
A Jle? + 8%r9)32 7 (g2 4 g2/ Sz
. (A.il) S
. ri
: exp[250g - (e + 8%r%)1%1)ar =
- ° =
; 120 T
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To simplify the argument of the exponential function, one introduces

v = 87%[g - M(£°% + B2p2)1/2 (A.12)

and (for the upper limit of the integral)

V(x,r) = B 2[x - M(x° + 82r2)l/2; (A.13)

(In Ref. 1, X is used instead of V. The author has changed the
notation because the variable V does not solely depend upon Xx.)

Then, from Eq. (A.12)

Yy
|

= v + M(r2 + v2)1/2

and from Eq. (A.13)

x =V + M(r° + v3)1/2 (A.14)
Hence
2 . _2\1/2
dg = dv(v(r; 1; ,\),2)1/% My
R(E,r) = (2 + 8%r2)12 = (2 + 29)Y2 Ly (a.15)
analogously
R(x,r) = (x° + 8°p2)172 o (v2 4 p2y1/2 | \y (A.152)

Then by substitution into Eq., (A.11)

¢ ( Xs¥,2 ) = v 5

B
-z exp(-1ikx) f exp (1kv) 7
J [(v2 + r2)1/2 + Mv]2(r2 + v2)1,2

i1kM
+ dv
[(v2 + rz)l/2 + Mv](r'2 + V2)1/?]
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In the second term of the bracket in the integrand an integration

by parts 1s carried out:

v
- M exp(ikv)
d(x,y,2) = -z exp(-ikx)
,[(v2 + rz)l/2 + Mv](v2 + r2)1/2 -
v 5 -
l] - M
+ [ exp(ikv)dv[
J [(v2 + p)172 4 mv12(v? + p9)172
4 M ]
dv [(V2 + r2)1/2 + Mv](v2 + 1‘.2)1/2

The contribution of the lower limit in the term outside of the
integral vanishes. With Eq. (A.15) one obtains for the upper
limit

M exp(ikV)
R(x,r)(V2 +r

2)1/2

The integral simplifies to

v
exp(ikv) qv
_l (v° + p2)3/?

Thus, one finally finds for the veloclty potential that pertains
to the acceleration potential given by Eq. (A.10)

v
M exp(1kV) exp(ikv)

+ I dv
R(x,p) (V2 + r2)Y/2 ] (2 4 2372

(A.16)

¢(x,y,2z) = -z exp(-1kx)

Where V is defined in Eq. (A.13), r and R in Eq. (A.8). The upwash
is then given by 3¢/3z. Eq. (A.10) is a fundamental sclution with
the slngular point at the origin. The flow field 1s represented

by a superposition of such fundamental solutions but with singular
points (£,n) lying in the plane of the wing. One then must replace
X, by x-£, and y by y-n. Consequently, one has now
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r? = [(y-n)° + 2°]
R = [(x-£)° + 8°r23%/? (A.17)
Vv = 8"2[(x-E) - MR]
We note that
(v2 + p2)1/2 2 g72(R - M(x-£)) (A.18)

Let f(g&,n) be the strength of the doublets assigned to the
particular solution Eq. (A.10). Then

V(x,y,2) = -z I dEdnf(a,n)[—g

Mik] 1kM
A

exp| —=—(M(x-£) - R)
g° ] (A.19)

Here A 1s the wing area. We determine 1im (y(x,y,z). The limit
is obviously zero, as long as R # O, fo%+9nstance for all points
outside of the wing. Assuming that the origin lles within the
wing area we evaluate (for simplicity) the expression for x = 0,
y=0,2z2=¢>0), 1.e., we approach the plane of the wing from
above. Accordingly we consilder

2
w(O,O,e)" g > I dgdnf(ﬁ,fl)
A (e2 + 8%(n° + 91372
(A.20)
Mik
+ ikM 2 2, 2 2.,1/2
[52 + 82(n2 2)]1/2 exp[ (-ME - (E° + B°(n° + €9)) ]

We cut out from the wing area a small ellipse, given by
. _ -1
E=ycosa,n=y8 sin a
where y 1s constant and independent of €. For polnts cutside of
thls ellipse, the integrand 1s bounded; because of the factor

€ in front the expression vanishes for € = 0. Retaining within
the ellipse only the dominant terms, one finds
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b
1im $(0,0,e) = ~1im B%£(0,0) € dkdn <
€+0 €+0 (52 + 82(n24'€2))3/2 ‘
ellipse !
In evaluating the integral we set o
%)
~ .l,
€ =€, n=¢i :o:"
The boundary of the region then becomes w2
i\
E=Xcosa,i=1L 87! sin a L
€ € o
and one obtains ) oo
-.:.p
1im ¢(0,0,e) = -1im B2f(0,0) I 5 55'2 7T j}
- N
e+0 €+0 ellipse (E° + B°(A° + 1)) »
Now we set
E = P cos a
. _ P
n = 8 sin a
The boundary of the region is then given by
F =vy/e
Moreover
= o o
dgdn = B drda
Then
Y/¢e
1im $(0,0,e) = -1im 278 £(0,0) I eby
e+0 £+0 (1‘2 + 32)3/2
v/8
= 1im 278 £(0,0)(r° + g2)~1/2 ' = - 21 £(0,0)
e+0
0
124
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The acceleration potential Eq. (A.20), therefore, gives at point
(E,n) the value -27 f(£,n) and for the nondimensional pressure
defined in Eq. (A.5) 4nf(E,n). The contribution to the 1lift is
the pressure difference between the lower and the upper side. It
is denoted by Ap. Thus one finds

Aﬁ s - B“f(g’n)

The upwash due to this 1lift 1s then found from a corresponding
superposition of expressions Eq. (A.16)

W(X3y’Z) = -8-];’- % [Z I AP(E,H)K(X-E, y-n, Z,k)dEdn] (A.21)
A
where
M exp(1kV)
K = exp(-ik(x-£)
R(x-E,0) (V(x-E,r)° + r)1/° o
V [ 3
exp(ikv) dv
¥ I (V2 + r2)3/2
r, R and V, and (v2 + r2) are given ingqs. (A.17) and (A.18). Eiﬁ

This equation 1s due to Kuessner it holds throughout the flow
field. Identifying w(x,y,0) with the upwash found from the

boundary conditions at the wing surface, z = 0, one obtains an ﬂu}
integral equation for Ap(g,n). Frequently this is written as x

w(x,y,0) = g; f Ap(£,n) K(£-x)(n-y,k)d&dn
A

i.e., one makes the limit 2z+0 immedlately. Because of the
singularities of K, thls expression must then be interpreted by
some speclal technique (e.g., the one due to Mangler), but then
one has to verify that the assumptions made by Mangler are
applicable. The present analysis is based on Eqs. (A.21) and
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(A.22). The evaluation of the kernel K as a development with
respect to k is due to Ueda (Ref. 2). (See Appendix B.)
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APPENDIX B
REDERIVATION OF SOME FORMULAE DUE TO UEDA

The derivation of the formulae on which the present report is
based seem to be available only in Japanese (Ref. 2). At least to
some readers, a rederivation may, therefore, be desirable. The
results shown here are somewhat more detailed than those of Ueda.
The following expression is to be evaluated:

v
-~ & ikv)
B(k,r,V) = exp( dv (B.1)
T _1 (ve + p2)3/°
A slight simplification is obtained by setting
k = kr
V= V/r (B.2)
v = ru
Then one obtains
~ =~ ~- =, = =
B(k,r,V) = r B(k,V) (B.3)
with
v _
= = = (iku)
B(k,V) = £Xp du (B.4)
’ —£ (u2 + 1)3/2

In essence the formulae are obtained by a development of the
exponential function in the integrand. But, as the development
generates higher and higher powers of u, the integrals will not
converge as the lower limit tends to negative infinity. Therefore,
we write

(k,V) (B.5)

ee]]
I~~~
Xt
<4
~
[ ]
w
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with
0 -
B, (k) - [ -Spplikup g, (B.6)
(u= + 1)
-
V -
= - = iku)
B.(k,V) = exp( du (B.7)
AN g (u2 + 1)3/2

P Y

A development of the exponential function in 52 leads to converging

integrals. Real and imaginary parts must be treated separately.
= T e n -2n =
Bopk, V) = 1 (=) k7 U, (V) (B.8)
n=0
= = = T n -2n+1 =
Byp(k,¥) = I (=)" k Uppeq (V) (B.9)
n=0
with
SR SR
U (V) = — du (B.10)
These integral can be expressed by elementary functions. Let
wn be the pertinent indefinite integrals including the factor
(nt)"'. Then S
Wy (u) = u(u? + 1712 (B.11) ;QJ
N
Wo(u) = -(u s )72 (B.12)
Wp(w = (/2)[108((u® + 124wy - u? « 0TVE] B
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Further expressions can be obtained recursively.

m-2

m-1 m u

The relation

d u u
dqu T2 172 " (m-2)—y

(u + 1 + 1

= (m—2)m!(dwm/du) + (m-1)(m~2)!(dwm_2/du)

yields the recurrence relation

m-1 1

1 u
1)1/2 m(m=-2) wm-z(

(m-2)m! (uz

wm(u) u)

+

Ueda's formulae are based on this relation.

A more direct formulation,
is based on formulae in Appendix C.

definitions (for indefinite integrals) are introduced

=172

112 dw

m W)

I wm(w2 + 1)
1;3/2(w) - I WI(we + 1)7372 gy

They are related by

-1/2

1732w = ™ e ) + (m-1)1- 72 ()
First we evaluate BZI' Setting
m=2n + 1
one obtains
1;372(w) = -wBE e 72 4 an 13 7200
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which will be used in this report,
there the following
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(B.16)

(B.17)
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Furthermore, from the equation top of page 149

n-1

-1/2 -1,.2 1/2 24,
Ioog(w) = [(2n—1)82n_2] (we + 1) zzo Boy W (B.18)

For the B,,'s, one has the recurrence relation Eq. (c.8). To
obtain U, ., one must substitute the limits w = V and w = 0 into
Eqs. (B.17) and (B.18), and multiply by ((2n+1)!)_1. One obtains

TV2

U, = -(v2 + 1) (B.19)

1

2 )-1/2

U - -[(2n+1)127" ¥20(F% + 4

2n+1
(B.20)
n-1

-2 1/2 =24
Coner (V7 + 1) (220 B2y ) 2ns1; n 3 1

with

2n

2n+1 T T2n+)1(2n-1)8, _, (B.21)

c

One has the following recursion relation

BZn-M

Bon-2

®2n+1 _ _2n_ 2n-3 (2n-1)!
Coh-1 2n-2 2n-1 (2n+1)!

One has from Eq. (C.8) (setting k = n-2)

Bon-4 _ _ 2n-2
B2n-2

Therefore

2
Chne/Copoq = = 1/(4n"-1) (B.22)
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Because of the factor 2n in the numerator of Eq. (B.21) the
recursion starts with n = 1; then

This suffices to evaluate Eq. (B.20). But on the basis of Eq.
(B.22), one can also start with n = 0 and ¢, = -1. Then Eq. (B.20)

encompasses also Eq. (B.19), if the sum
k=0-1
2 which then arises is understood to be zero.
k=0
The expression U2n+1 consists of three terms: the sum in

Eq. (B.9) formed with the first of these terms gives

-1 (" eyt K0 BRER e )2 02 iTER e 17 Ran (kD)
n=0

One thus obtains

Byy = - V(72 + 1972 sin (kW)
® n-1
e (§8 + V2 7 (n Corrt LU () sanvzz) (B.22a)
L: n=1 L=0
g b =2n+1
- 1 ()% e k
i ne=0 2n+1
The 02n+1'3 and 822'3 are evaluated, respectively, from Eq. (B.22)

with ¢, = -1 and from Eq. (C.8) with Bp = 1.

1
To evaluate EZR one needs expressions UZJ'
based on the formulae of Appendix C. Eq. (C.13) form = 2m

assumes the form

They, too, are

1

2m, -1
1;3/2 s oW T2, /2 -1/2
m,

v oem Iy o
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Examining this equation and Eqs. (C.9), (C.10), and (C.11) one
finds that there is no contribution of the lower limit in Eq.
(B.10). One then finds

DAMMIL, W Be SRRt Y U

Ug(i) = = T2« )72 TR . /3 (B.23)
2
= U(T) = - T N@2 « 1y™2 1 52 o1 10g (72 + 1)!/2 4 §] (B.21)
2 27 ]
5
:," U2n(V) =
S SN2 . )12 var oo (T2« 1172 “i’ g 7281
n 2n NI
- ¢, 1og[(#2 + N2+ §] o2 (B.25)
with
o, = 2n-1 ! (B.26)

2n (2n)! (2n-2)[32n_3

The 023'8 are expressed explicitly in Eq. (B.27). This formula is

obtained as follows:
cy = 1716 (B.26a)

From Eq. (C.5) which, by definition, is also satisfied by the B's
one finds

BZn-3 - - 2n-1

B2n-1 en-2

Then, one obtains from Eq. (B.26) the recurrence relation

-1
°2n+2/°2n = -~ [2n(2n+2)}]

with the initial condition (B.26a) this is solved by

T 2(-1/4)" [r'l!(n--1)!]—1 (B.27)




i’ an o

For n=1, this gives

1
C2 = "3z
The last results show that Eq. (B.25) covers also Eq. (B.24) if the
=0
sum } is understood to be zero.
L=+1

Thus one obtains

Bog = - V(0% « 17172 cos(iki) « 771 (72 4 1)1/2
f 2§ s V2 3 ! (k/2)2" nf1 8 g2r-i
WL, AT b Bane

2n+2

-2 108072 + D2 4 D) 1 T (R/2) (B.28)

n=0

with
Bager/Bagoq = = M (% + (1/2)) , By =1

The independent variable in §1 is k. To suggest this we write
temporarily

kK =y
(B.29)
51 - Q
Then
0
(iyu)
Qly) = exp du (B.30)
[ 2 )7

Q(y) satisfies a differential equation closely related to the
Bessel equation. One has
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0
dqQ u exp(iyu)
& -1 j . 2372 du (B.31)
2 0 2
d™Q - - u eg)_(iyu) du (B.32)
dy2 _1 (1 + u?)372

sz/dy2 is not absolutely convergent; but the integral is well

defined if one reformulates Eq. (B.30) as

exp(iyu)

0
Q(y) = lim [

a+e (1 +u

-a

One obtains from Eqs. (B.30) and (B.32)

2)3/2

du

2 0
Q - E_g - I _E§BL£XE%72 du (B.33)
dy e (U o+ 1)
and from Eq. (B.31) by an integration by parts
0 0
dQ exp(iyu) exp(iyu)
- - 1 -y du (B.34)
dy (w2 + 1)172 N _l (ul + 1172
Combining Eqs. (B.33) and (B.34) one obtains the following
differential equation for Q
¢®q 1 dq i
R - - v paed - = — B.
dy2 dy Q 7 (B.35)

We separate Q into ints real and imaginary
Then

B T T R S R
............

........... LN .,

o

R s

parts Q = Qg ¢ i QI’

0 (B.36)

(B.37)
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Obviously Q(=) = 0, fu

rthermore Sy

U‘ﬂ

Q(0) = ? du - u -1 (B.38) e

- (uz + 1)3/2 (u2 + 1)T/2 :.:..::‘

A DY

SN

-

These are the boundary conditions for Eq. (B.35). The solution Q PN

will arise in the form
difficult to recognize
satisfied. It will be

Q

implies

whether the boundary condition Q(=) = 0 is
shown below, that the definition

of power series in y, which makes it '!%

- sin(yu)
(y) -i T, 372 du (B.39)

_2._ | = 7/2 (B.HO)
y=0

The derivation is shown below. This condition will be used instead

of QI(-) = 0. This pr
would find d°Qp|dy?|
parts are treated sepa

y=0

ocedure cannot be applied to QR; (there one
= o, From here on, the real and imaginary

rately. The following derivation of Eq.

(B.40) ends with Eq. (B.47). One has

2

a-Q 0 2
—F - - [ el gy o () v Q) (B.41)
dy - ¥y e
with
0
Q, - sin(yu) _ 4y (B.42)
- 2 . 1)1 72

- o

in(yu)
Q,, = >
12 I (u2 + 1)3/2

du (B.43)
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It is not permissible to form the limit y = 0 under the integral
sign, for within the region of integration there are always values
of u for which sin(yu) is not small. We write

-a/y 0
QIZ-[ *I ——gi—n(%du,a>0
- —a/y (U + 1)

Now

-al/y

| —?/y sin(yu) .o | ) -?/Y 1 du = u
RENTHRETEIG e ) w2+ 72 |

- -a 41

(a2 + 3172

This expression vanishes for y+0. Furthermore,

0 sin(yu) 0 -u 2 -1/2 :
I Y du | < y I du = y(u€ + 1)
(u2 + 1)3/2 (u2 + 1)3/2
-aly -~a’/y u=-a’y
= y[1 - ((a/y)2 + 1)—1/2]
-
Therefore n
lim Q. ,(y) = 0 (B.44) "
y+0 ’ 5
Q11 is transformed as follows

(u2 . 1)1/2

0 0
apy - [ au - [ @® ¢ )72 4w Dstatywau

2 o
o - J u’! sin(yu)du (B.U5)

3 -
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The second integral can be evaluated by the calculus of residue,

0 +o
I u”? sin(yu)du = (1/2) I v 1 (sinv)dv = n/2 (B.U46)

The integrand in the first integral on the right of Eq. (B.U5) is
rewritten

I VS N GRS D M I O 1
(u2 . 1)1/2u (u2 . 1)1/2u[(u2 . 1)1/2 - uJ
In the integrand of the following expression, one has
u¢<-ay<eo
Therefore
-aly sin(yu)du “a/¥y gy o
3 72 (2 172 <a) [
_a (u® + 1) uf (u® + 1) - u] G P I -
ACq
n"“’:
The limit y = 0 of this expression is zero. Furthermore, §€§
ooe
0 0 o)
sin(yu)du du L=
| I (u2 + 1)”2u[(u2 + 1)1/2 - ul I < I u? + 1 (8-47)
-a/y -aly

Also this integral vanishes in the limit y+0. Substituting f;ﬁ
Eqs. (B.44), (B.45), and (B.46) into Eq. (B.41) one obtains, s
indeed, Eq. (B.40). o

One notices that the homogeneous part of Eq. (B.37) is the
same as in Eq. (B.36). The indicial equation for the singular
point y = 0 in Eq. (B.37) gives the exponents 0 and 2. Therefore,
there exists a homogeneous solution in the form of a power series
which starts with y2. We set for this particular solution
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This gives the recurrence relation

(2§+2)2) a -a,. =0

23+2 2j

which is satisfied by
2j+2 -1
3,440 = H(1/2) [3r(3+1)1] (B.49)

if one chooses a, = 1. One solution of the inhomogeneous equation
(B.37) can be obtained as a power series in y.

Qu(y) = I ()b, y?I" (B.50)

J=0

Hence, by substitution into Eq. (B.37)

-yJ . - . 23-1 _ -1
J§0 (-)70(23+1) 25100y 54y * By 4Dy y

The equation gives for j = 1

Hence

b, = -1 (B.51)
In addition one has the recurrence relation
byya/Dpyy = = (/ADL(I1/2) (3172217 = -L2)? - 1171 (B.52)
Then because of Eq. (B.40)"

QI(y) - Qu(y) + w/4 Q3(y) (B.53)
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Returning to the original notation one has

B (R) = 1 ()b, & v a T (20232051 (ge0177]
11 30 23+1 550
(B.54)

Now

BI(V,E) = B1I(R) + §2I(V.k)

521 is found in Eq. (B.22a). The last term in Eq. (B.22a) cancels
the first term in Eq. (B.54), for the sz*1 and the 2541 satisfy

the same recurrence relations (Eqs. (B.52) and (B.22)), the same
starting values b

One thus obtains

= c1 = -1, and the sums have opposite signs.

1

B, = - V1@ + 172 sin(ki)
=1 N
=2 172 % n =(2n+1)f " <24, e
+ (V0 + 1) I ()Y e k 1 8,,V S
ne1 2n+1 20 2% 3
(B.55) —
S o, 25+2 -1 oo
+ 1) (k/2) [n!(n+1)!] R
3=0 o
where the coefficients Con+1 and the 82k are obtained respectively -
from Eq. (B.22), with ¢y = -1 (or ey = 1/3), and Eq. (C.7) with
BO = 1-
To evaluate QR(y) we use a result about Bessel functions.
Setting

Qp(y) = ¥y Z(y) (B.56)

-
.
[}

e *r
-

2 T
W, i’". e

one obtains from Eq. (B.36)

N
[A l':l

4y 2

+
<)
218
]
~~
+
)
N
[ ]
(o]
e 2" - a5
. [z,
'l '.'."‘: g .' /, ")
o
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which is solved by
Z = Z1(iy)
where Z1 is some linear combination of Bessel functions of order 1.

the conditino Z+0, as y+0 is satisfied by the Hankel function of
order 1, H1(1) (iz). One has (see for instance Ref. 3)

T e Ty S VS -

-

Hy(2) = J(2) + 1Y (2)

' where
z = x + 1y
) ® 2,\n
) -(z2/2)%)
3 (z) = (z/2) ] Llz
! 1 n=o i0*
g 1(2) = w -(z/2) © + 2(10g(2/2))Jd,(2)
™ ) 2,\n
_ (-2/2)°)
! (z/2) nzo (¥(n+1) + w(“*Z))ETTETTTT_}
- Here
)
: Yo = o Y
;; n-1 -1
B R ! m', n>2 (B.57)
. m=1
i
Y = ,5772156649...
5 Then
' 1
Yn+1 Yoep = — 27 + 2 m21 m™ !+ (ne1)7]
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Observing that
log(iy/2) = log(y/2) + iw/2
one obtains

Hy(1y) = Jy(1y) + 1 ¥, (iy)

- 2n+1
n=

According to Eq. (B.56)

Q, = const y H1(iy)

R
and this expression satisfies the condition for y+=, Satisfying
the condition QRly-o = 1 and returning to the original notation one
then obtains

B, (k) =1 - I (v(ne1) + y(n+2) - 2l0g(K/2)) (k/2)212
'R n=0 ni(n+1)!

With Eq. (B.28) one then obtains
B, = B1R (k) + B2R (k,V)

Bo- -7 1@+ 1)712 cos(ikW) + T NEZ V2 4y (B.58)

1/2 E (k/2)%0*2 0 281

=2
+2(V 1) T (a7 L Pan-t

n=1

; (k/2)2n*2

+ 210g((¥2 + 1V/2 - ) 2]
n=0

v - = 2n+2
- nEO (¥(n+1) + w(n+2) - 2log(k/2)) K2l
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% (Here the summation subscript in the second row of Eq. (B.28) has §¢
A been changed by setting j = (n+1). The next step would be to 3
return to the original variables k and r, and to form B = BR + 1 Bi‘ -

The first terms in these expressions then combine to form as f:
contributions to Bp + i EI' -3
N2« 1)7V2 exp(ikT) 5}

by

or because of Eq. (B.2) o

-1/2 =

S LS G exp(1k¥) (B.59) i

Within the kernel K, B appears in combination with

BRI

v
»

2)-1/2

ME V(T . P exp(1ki¥)

This and the expression Eq. (B.59) can be combined. We recall the
following relations (Eq. (2))

P - [(n-9)2 + 2%)1172
R = [(E-%)2 + g2 527172 (B.60)
7 = -B"2((E-%) + MR)
Then
(72 + 2212 L g72(R + M(E-X)
10g(¥2 + #2)V/2 - ¥) = 10g[B 2(R + M(E-x) *+ (£E-x) + MR)]

(B.60a)
-~ logl(1-M)" (R + £-%)1 = log[(1+M)F2(R - (E-%))" "]

Using these relations one obtains

exp(1k¥) (V2 + r2)"1/2 [- + !]- - 1 exp(1ki)
R RV

<t |
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=172 45 a significant

The vanishing of the factor (V2 + )
simplification for subsequent integrations with respect to § and n.
The factor V_1 occurs only in the first term of a development with

respect to k. To display this we write

exp(1ki) (V2 + 72)"1/2 [é e Ml o L fexpik®) - 1] - L
v R RV RV "3
) 7
Wa s
~ The term in the bracket is, of course, of 0(k). Combining the term ;Q
N - (1'1\7)_1 with the other terms of order k° (in Eq. (B.58)), one s

obtains after introduction of the variables k and F, using L 4
Eqs. (B.60) and (B.61) -

(72 + 72172

1 1 1
— F  ———
R0 2 12

LT S 2 N
B LAAARADS K
.
'

v v

3 - L I - P RAP P
- r r°RV
M
= - L o[- 8%« B v MR(E-D)]

r 8" r~RV
»":
- 1 1 2-2,z =2 222 ==
5 - 5+ =z [- 87 (Eax)° + B°0° + MR(E-X)]
» ¥ B°rRi
s
‘ Hence
;'
2 L1, (@2 R - (BB 82
I - ~ - p — = = T = = =~
" RV ;E ;? ] 7l R R(R + g-x)

The last formulation shows that for £ - x > 0, and r =0 (i.e., if

fi : the point (x,y) lies upstream of the point (£,n), there is no

fi singularity in the flow field, and for (g-x) < 0 (i.e., if the
. point (x,y) lies in the wake of the point (£,n)), one has a

!: singularity -~ 5-2. Assembling all this information one obtains,

R |
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=2 ~2.-1/2

MR (V" + pr%) exp(ikV) + BR(k,ﬁ) + 1 BI(k.V)

- - [ﬁV]-1(exp(ikV) - 1) + %g B—:—éélll

r R
o 2n+2 o
=2 ~2.1/2 (k/2) =2%-1 =2(n-9)
+ 2(V° + 1) n§1 TN 221 Bogoq V r

+

® = 2n
2(k/2)%[108((k/2) (T2 + #2)1/2 - §y)1 7 (kE/2)
n

0 nt(n+1)?!

® ~ 2n .
- 2 _ (kr/2) B
(k/2) nZO Lv(n+1) + w(n+2) - i) reeryT ;Ei
® -1 «
=2 =2.1/2 _\n 2n+1 =22 =2(n-2-1) T
PAHEE e E T L) ey K Lo B VT L

Here the expressions containing V can be expressed in terms of E-x
and R, by Eqs. (B.60) R in turn is expressed by E-x and r. The
expression therefore appears in terms of the basic independent

variables.

In the last minor step, we introduce the Prandtl-Glauert
coordinate distortion. The purpose is to simplify the expression

R, which introduces in certain integrations branch points of the
integrand. We set accordingly:

-8 'y, n=8"Th, z =82 (B.61)

i

-8 ', £ = [(n-y)2 + 227172

3

R(E-%,F) = R(E-x,r) = ((£-x)2 + p2)'72

V(E-X,7) = V(E-x,r) = -8 2(MR + E-x)

- B2[R+M(E-%)1 = B 2[R+M(E-x)]
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10g(¥2 + t2)'/2 - §) = 10gl(1-M) 1 (R+E-%)) = 1og[(1-M) "' (Reg-x)]
= logl(1-M)~" ¥R - (g-x))" 11 (B.61)
(cont'd)

The basic expression for the upwash now appears in the form

w(x,y,z) = (8m)7" %; (z II Ap(E,n)K(k,E-x,r)dEdn) (B.62)
- K= 8" exp(ik(g-x)(K, + K,) (B.63)
2 ® 2n
: _ B~ R - (g-x) , .2 2,0 fr_wyy=] (kr/28)
: Ky = 2 R (k“/2)[1og(k/2)r"(R - (&-x)) '] g T
E (B.64)
; K, - 28%r72 - B2[R(R - (§-x))17" + (k®/2)[1og((kr)2/2)
[
f » 2n
| - log(k(R - (g-x))] g é%%%%%%r—
I (B.6ka)
: 2
2 - - ® n
& K = 87K TR+ (g™ e (2/2)10gl (/)R + (E-x))I] L
! (B.64Db)
' K, = = (RV)”' exp(1kV) -1) (B.65)
- o 2n+2 n - _ -
+ 8 Z(R’M( ‘X)) 2 2 gk/§11 2 82£_1 VZE 1(r8 1)2(“ 2)
n=1 2=1
b1l (e 2n+1 “E’ 5. vZ(pg~1y2(n=1-2)
ne1 2n+1 20 2%
- (k/2)2 ] [w(ne1) + w(ne2) + log(1-M) - 1 JLke/(28) 1%
i n<o v v g T AT (n+1) !
t
) where
2
°2n¢1/°2n-1 = =1/(4n" + 1), c, = 1

b
g
E 1us
b
g
b
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During the derivations also constants Cn have been encountered,
but in this formula they are directly expressed by factorials (see

Eq. (B.27)). Moreover

32n+2/82n - (2n+1)/(2n+2), Bo = 1

Bonet/Bopoq = - 20/(2n+1), By =1

¥(n+1) + $(n+2)

N -1
-2y + § m + (n+1)
m=1

.5772156649

<
]

r, R, and V are defined in Eq. (B.61). Eq. (B.64a) displays the
singularities which occur for (£-x) < 0 and r+0. Eq. (64b) shows
that there are no singularities for (g-x) > 0. For points (x,y)
close to points (E,n), for instance for points (x,y) within or
close to a (g,n) element only very few terms of the infinite series
are needed. 1Including powers up to k2 one has

K, = 82r 2R (R - (£-x)) + (k2/2)1log K[P2(R - (E-x))" '] (B.66)

1

- 82R°V(R + (£-x))"" + (k%/2) log k(R + (£-X))

K, = - ikR™ ! + (k%/72)r™'v (B.67)

2

- (k/z)z[w(1) + Y(2) + 2 log 2 + log(1-M) - im]
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APPENDIX C e
SOME INDEFINITE INTEGRALS L
=
Let A
N
2
Im‘1/2 = [w’"(w2 + 1)712 4y (c.1) X
Setting
-1/2 2 172™1 nox . m(,.2 ~1/2
I = (w® + 1) )) a, w tec I(w + 1) dw (Cc.2)
. 0
one has
m-1 m-1
aI_"Y2/qw = (w2 + V20T PG 4 ) Ak WKL 4 o™
m k=0 k i1 k

(c.3)

We replace k in the first sum by j-1 and in the second sum by
j+1. Then

-1/2

]
~

m
aI | dw wl + 1) 1 ab J 4 7 aT (3+1)wd + ™
0

J+1
(c.b)

For 1 < J < m one ohtalns by comparison of the coefficients of

the power w! 1in Eq. (C.3) and in the derivative of Eq. (C.l) f:j
Jay )+ (J*haj,, =0 (c.5) -

j+1 i;ﬂ

Moreover, from the power wo

a™ + ™ = o (C.6) SO

' e

and from the power w" ff*
m _ ;:‘\':j

ma _, =1 (c.7) RYX
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) Eq. (C.4) amounts to two recurrence relations, one for even and ;‘
one for odd values of m. Eq. (C.7) shows, that the subscripts N

of the a?'s will be odd for even m, and even for odd m. Consider

2

. ‘l
2 odd values of m first and set e
<

3 3
it = + 1 ‘
. m 2m1
o
& then from Eq. (C.7) S
2 o
A 2m. +1
a, 172 (om, + 172 (C.7a)
m 1 >
1 !,
g .. ‘
N Let a sequence BZk with BO = 1 satisfy the recurrence relation }f
o Eq. (C.5) namely o
: 5
Bowso/Boy = — (2k+1)/(2k+2) (c.8)
j -
. The B2k's can be expressed in terms of factorial for half-integral
- argument, but this has no practical significance, as one will even -
then evaluate the B, 's recursively. The first few of the B, 's E-
are found in the following table -
LBy e,
0 1 -
2 -1/2 ;:;":-
N o
- 4 3/8 R
- A
6 -5/16 :
% Because of Eq. (C.7a) one has ;55
-
2m1+1 -1 i*
148 R
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Therefore, from Eq. (C.2) ;“:
1/2 1,2 172 ot 2k R

- - - n’\-'.‘

m 1 = [@m+1)B, 177(w" + 1)7° ] 8,, W 4

1 1 G .

u e

We write down some of these expressions :ﬁ:r
[

_ L) 'ﬂv).

I, 172 o (w2 + 1)1/ s

- 2 1/2 2 R
1,72 = wf + DYPras3w® - /)] o

: 1,712 =+ Y215t - (4/15w? ¢ (8/15)] e
- 2 2 5
1,712 = w? + DY20a/mn® - (67350 + (8/35)w° - (16/35)] L
For m even, we set m = 2m;. Then R

g

2m o

1= -1

&, -1 = (2my)

1 e

Setting j = 2k in Egq. (C.5) one obtains the recurrence relation .‘
ey

RN

we choose B, = 1. Then one obtalns the following values Sl
) By

1 1 s

3 -2/3 b

5 8/15 S

7 -48/105 = -16/3% ;Z:;Si:

Then _-.:.'_
Y

a2m1 = [)m 8 ]-18 ‘:\::-.

2k-1 = “*MPon <11 Fokan N

¥
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R 2 S S B o Skt S0 S0 b g ey

Finally, from Eq. (C.6)
2m 2m
1 _ 1 _ -1
e =-a - [2m182m1_1]
Thus,
-1/2 _ -1,.2 172 T 2k-1
Tom, = [2mBop 13 70 + )" T By g w
1 1 1
1.-1/2 (¢.9)
- [2mBon 10 7T
I51/2 = f(w2 + 1)_1/2dw = log[(w2 + 1)1/2 + w] (C.10)
Some such expressions are
1312 = w? + Y2120 - (1/2) 132
1712 = b? + DY210/60w - (5720003 + (5/16)w1 - (5/16) 152
Expressions
1;3/2 - I wm(w2 + 1)'3/2 dw (C.12)
could be treated independently by a simlilar procedure. In the
present context, one is led to more useful formulae for the upwash
1f one carries out an integration by parts to express 1;3/2 in
terms of 1;1/2. One has
17372 o _ 12 4 712 o1y 1712 ms 1 (C.13)
m m-2 -
For m = 0, one obtalns directly
163/2 = w(w2 + 1)-1/2 (C.14)
150

...........................................

---------

o
AL A S S x

l' l' I- ‘-
el
!:'.".'.’.
» .
e 4




Also needed 1s the following integral

I= I(wcosa - sinu)_l(w2 + 1)-1/2dw

Setting
W= tgh (C.15)

one obtains

I =‘sign(cose)f[(tgecosa - sina)cos8] 1de = sign(cose)lsin(e-a)'lde
Then
[(wcosa - sina)-l(w2 + 1)_1/2dw
(C.16)
= sign(cos6)log(sin(8-a)(1 + cos(e-a))-l]
Furthermore
I(wcosa - sina)-z(w2 + 1)-1/2dw
= sign(cose)Isin(0-0)'2[cos(e-a)cosa - sin(6-a)sinaldse
Hence
I(wcosa - sina)'z(w2 + 1)_1/2dw
(C.17)

= - sign(cos8){{cosa sin(e-a)-].1 + sina log{sin(6-a)(l + cos(e—a))'l]}
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- APPENDIX D %

. A LIMITING PROCESS hA

£

The following expression will be discussed: ;:

b"h'

} .,

lim 37 {2 5 5 ¢ = lim {32 I 5 > )

z+0 n, (n-y) z+0 (n-y) 3

¥ ! i

- - 22" (2 f3(mdn 0y

3 z 2 2.2
[(n-y)® + 2]

In both integrals we replace f3(n) by the maximum of |f3(n)| - “
|r3|max. One has ;

T'I - - .

I 2 3 - 2 ! arctg H;y NS

, (n-y) e

o

As the arctg remains bounded even when its argument tends to =

infinity, (as it does for z+0) the first term is 0(z) because of N

- the factor 3z° in front. Moreover g&

; ( 3
d =311 = A "

| —3 - 2 3[? . nél) 5 + arctg ] .

(n-y) (n-y) A

- Also the second term is 0(z). .fi
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APPENDIX E
n n n
THE EVALUATION OF INTEGRALS Iq ¢,dq, Iq ¢,dq, AND Iq ¢,daq

First we derive some auxiliary relations. Considering U and
V as functions of p and q (Eqs. (164)) one has

3U/9q = sin §

avV/3q = cos &

Furthermore, since R = (U2 + 112)1/2
) -1
log (R-V)| = -R
v U = const
35 log(R-V)| - R-»7 'R - (rev)UTTR7!
V = const -1 1.1
= U + VU 'R
Therefore,
9 1 -1 -1, 1-1
39 og(R-V) = =R 'cos § + R VU 'sin 6 + U 'sin §
- R (-Ucos 6 + V sin §) + U 'sin &
Then with Eqs. (164)
%3 108(R-V) = -pR_ U™ '+ U 'sin &
(E.1)
d -1 “1,,~1
3q 108((R=V)|U|"1) = -pR" U
Similarly
3 Jog((R-x)]Y|"") = pr7TY! (E.2)

aq
(Notice the difference in sign.)
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”'-
Y.
Consider now "
n n n <
Jq ¢,dq - Iq log(k(R-X))dq = Iq [log((R-X)/Y) + log(kY)Jldq .~
ey
Iy
With Eqs. (E.2) and Eqs. (162), viz. Y
R
I
¥ {
Y = qcos Y~ psinyYy -
: one obtains
an¢1dq - (n+1)_1§qn*1log(k(R—X)) - qun+1R—1Y_1dq - cosYan+1Y-1dq Eﬁ
, :;g
Carrying out the division one finds f&
" R L cos'1‘1[qn~‘(ptg¥)q""1*(pt',g\f)‘zqn"1...(pt‘.gwr)n]*(pt:g\r)“”Y"1 .ff
? There are two integrals with the factor (ptgY)™ ', namely ?'
: N+l pom1y-1 -1 B
-(ptgY) [pIR Y 'dq + cos Y IY dq] '
- .'-;
E Hence with Eq. (E.2) i;
- , - -,
- ~(ptgV) ™ [10g((R-X)|¥Y|™") + log(kY)
~T
- -(pth)n*l log(k(R-X)) ;:E:';
]
Therefore,
[a%,da = (e T Q™! - (pan ™ 10g(k(R-X)) (E.3) =
- - p cos"v[]n"(q“ + (ptgM)a™ ... (ptg)Mldq

n

- [(n+1)"1g™* o (ptg¥)n~'q" + (pth)z(n—1)—1qn—1...(pth)nq]

e % T

The treatment of an¢2dq = an log(R—V)|U|_1) is nearly the same.
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Beside Eqs. (E.1) one has Eq. (164), viz.

U= qsin§ + p cos §

1 n +1

jq ¢,dq = (n+1) 1{qn 1log(R ~)|u|” Ty & pIR (qsin6+pcoss)_1dq}

1(qsim5+pcosé)-1 - sin"1es[q“~v(--pczot',6)q“-1 + (- pcoté)2 n-2

+ (-cotép)™ + (- pcots)n+1 -1

Hence,

[a"e,dq - (n+1) "™ - (-peotn)™ 10g((R-V) [U]™ ")
(E.4)
+ sin-1GIR_1[qn+(-pcot6)qn—1+(-pcot6)zqn-z*(—pcoté)n]dq]
Finally we consider

n+2

- 2 n
[a"eyda = [a"RY 'aq = [(P%a" + )1 'R Vdq
Now
p2a™ ! - pZeos™ VL™ + (pteMa™? + (pta)®17! + pP(ptem) ™! b
qm‘?Y"1 - cos"Y(qn+1 + (ptgY)q” + ...(pth)n*1] + (pth)n+2Y—1 3§3
One notices that terms with the same power of p can be combined. ;:if
For instance b
pZ(Pth)n + (pth)n+2 - pn+2(th)ncos-2Y (E.5)
"
o
:::._:.'
w3
N
&
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but in general the result appears rather more complicated.

1

an¢udq - cos‘1YIR-1[qn+1 + (ptgvq" + (ptgM)%q" ... (ptgn)™*!

« p% " p2(ptgn) ™ N 1dg + P T (tgY)Peos P Y10g((R-X)/ Y| T)

In the last term Eq. (E.2) has been applied.

158

""""""""""""""""""""""" P N R S Y PR R . et e et e T T e T T T T T T -
M PR S Pt AT PRI P, S, S U LI LI > JRLP T UL SOt WP PP Uy UL S S | MR SN e ta A e Band ek




..................................

APPENDIX F
LIMIT a-+7/2

Only some of the expressions for the upwash written down for
a 4 m/2 allow one to form the limit a+w/2 directly. The others
give either infinity or the difference between two quantities that
tend to infinity. The results for a = w/2 have been obtained by
direct computation. This suffices for practical work. The
limiting process a+n/2 has some value as an exercise, besides it
provides a cross check of the formulae.

The type of difficulty can be seen in the following examples.
Consider

I 9X_ in the limit €+0. One has
2X+¢

I dx ¢! log(ex+c) for € # 0
EX+C x/c for ¢ = 0

Now

€ log(ex+c) = 5_1 logc+e:-1 log(1 + (ex/c))

The first term can be regarded as a constant of integration, which
tends infinity as € tends to zero. Developing the logarithm with
respect to € one obtains indeed x/c.

The example shows that the idea of a development cannot
always be avoided, even if one would include the specific constant
of integration in the formula for the indefinite integral.

We derive a number of recurring limiting expressions. The
order of the error in terms of Aa = a - w/2 is shown

(1 - sina)cos‘za = (1/2) + O(Aa)2 (F.1)
cos_1a—tga = 0(Aa) (F.2)
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a

-; Using Egs. (133) one obtains

U = ~Y+0(Aa)
(F.3)

AALALLL) e

r e

V = X+0(Aa)

LAy

More specifically,

vk

~ vy
LT
I'V' P

L

V-X = Ycosa-X(1-sina) = Ycosa—(l/Z)Xcoszwo(Aa)3 (F.4)

TR

¢

U+Y = Xcosa+Y(l-sina) = XCosa+(1/2)Ycosza+0(Aa)3 (F.5)

1

Ul B nl Bl (F.6)

1

vl - sy ey 'y - —1'1—Xcosay"2+o(Aa)2 (F.T)

.-...

.1,:,.r,m',-. STt
. < e

AP i etetetn IR

VU = (xSinoercosm)()(cos<x-Ysinct)-1

.
'

,, I
o, o h e
.1, Sttt

1 1

)

= ~xY V+(xy '+ (Xsina+Ycosa) (Xcosa-Ysina)~

e
A

o A

= —XY—1+(X2cosa—XYsina+XYsina+Yzcosa) (F.8)

1 2

vu ! = -xy"V-cosaR Y—2+0(Aa)2 (F.9)

UY—1 = --1+(U+Y)Y-1 = —1+cosaXY_1+(1/2)cosza+0(Aa3)

1

log((R-V) (R-X)"1) = log(1-(V-X)(R-X)"1)

1

L

« . .
W e, ’
. .
L A

’

- (-Ycosa+(1/2)Xcos2a)(R-X)‘ - (1/2)!2cosza(R—X)’2+o(Aa3)

s

v
V4

-1

log((R-V) (R-X)"') = -cosa(RY '+xy" ') - (1/2)cosal R2Y 2+RXY 21+0(8a)>

(F.10)
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& We revert to the original notation and write down those ;}:
: expressions which contain factors tga or cosa "
oy 0 2 ~1 o
- Ioo(a) = B [arctg(v/u) + tga 1og(k(R-X)) - cos alog((R-V)/U)] AN
I?é = 82[-sina cos—za U log(kY) + cos-2u U2/y] ~

01 2 -1 5

T Iop = “B7cos 'a U log (kY) o
- 192 = 8%{u tg®a 10g((R-V)/U) - sina cosa log((R-X)/Y) + cos 'a(R/Y)] c
02 2 -1 5?

1.5 = B°{U tga 1og((R-V)/U) - cos a log{(R-X)/Y} o~

01

Because of the definitions of X, Y, u, and v one has o4
arctg(v/u) = -arctg(X/Y) + const. This term, expressed in U and V, =
differs from the correéponding expression in terms of X and Y by a iﬂi
constant only. The other two terms of Igo are taken together. ﬁﬁ

- Here U = const. Therefore, changing the constant of integration by

cos a log kU, one considers g

¥ R
- tga 1og(k(R-X)) - cos 'a log(k(R-V)) S
: -1 -1 -1 2
1 = (tga - cos a)log(k(R-X)) - cos 'a log((R-V)/(R-X) ') s
N

The first term is 0(Aa) because of Eq. (F.1). The second term N

gives RY-1 + XY-1 + 0(Aa) because of Eq. (F.10). ’f

Consider next -

5 190(a) + 192(a) = B%U[cos™a Y™ + cos™la RY™! + tg?a 1og((R-V)|U|™") S
S -2 N =
- sina cos “a log(k(R-X)) ] =

5 cos™2a UY™! = - cos™2a + cos o XY ' + (1/2) + 0(4Aa) e
-, o
s oo
: =
. RS
- 161 P
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3 ol
o
2 -1 -2 :$
tg a 10g((R-V)|U| ') - sina cos "a log(k(R-X)) 4
33
2 -1 2 3
- tg°a 10g((R-V)(R-X)"') - tg°a log(k|U|) =
+ (tgza - sina cos-za)log(k(R-X)) l:::l
1 1 1 2,-2 2 R
= -~ cos a (RY +XY ") - (1/2)(R"Y © + RXY ) |3
- (1/2)10g(k(R-X)) - tg°a log(k|U|) + 0(Aa) :
Therefore, if one disregards constants of integrations . ‘
.
19,(n/2) = 190(n/2) + 175(a/2) = -8%¥[cos™'axy™! + cosTla(RY™! ¢ xy7T) e
- (172)(R%Y™2 + RxY"?) - (1/2)10g(k(R-X)) ] =
19,(n/2) = (82/2)[Y log(k(R-X)) + XRY™' + RY"'] ]
o
2,-1 2,~1 e
but RY =Y + XY and for a = ©/2 = Y = const.
Therefore, by another change of the constant of integration, ;;:;:
one obtains *-
1?0 - (82/2)[Y log(k(R-X) + (XR + Xx2)¥ 1] B
0 2 -1 -1 . ot
I5;(a) = 8°U{tga 1og((R-V)|U| ') - cos 'a log{k(R-X))} i
2 -1 -1 -1 . -1 oEE
= B°U{(tga ~ cos a)log((R-V)|U "|) + cos '@ log((R-V)(R-X) ')
- cos e log(k|U|)} ¢
{:
2 -1 -1 -1 o
= 8“U{0(Aa) -~ RY ' - XY ' - cos 'a log(k|U|)} 2
. wr
» Hence o
t.. .~:‘:-
: 19 (n/2) = 8°(R+X) R
01 3
. 162
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The limiting process a+n/2 is immediately obvious in 11...

121... and Igz.. (In other words, no expression cos-1a or tga are

encountered in these formulae.). Limiting processes are, however,
needed in Qo. One has

Qo(a) = (V/U)(log(k(R-X))-1) - tga log(k(R-X))
-1 -1
+ cos a log((R-V)|U| ")

Here
-tga log(k(R-X)) + cos 'a log((R-V)IUI)-1)

- cos 'a log((R-V)(R—x)-1) - cos-1a(log(k|U|) + 0(Aa)

-1 -1 -1

= -RY + Y - cos a log(k|U]) + 0(Aa)

Therefore, disregarding constants

Qo(w/Z) = -XY—1log(k(R-X)) - RY-1

2

Q - (1/2){V2U_ log(k(R-X))-tgzalog(k(R-X)*sinacos-2alog(R-V)|U|-1)

- (1/2)v2u"%-tgavU™ ! - cos 'a RUTT}
2,-2 2 -1
= (1/2){X°Y “(log(k(R-X)) - (1/2)) + tg°a log((R-V)(R-X) )

+ (sina cos °a - tgza)log(k(R-V)) - sina cos” 2a log(k|U})

- t,gm(-)(Y"1 - cosa RZY-Z) + cos-1a R(Y-1 + cosa XY-Z) + 0(Aa)}

= (172) {X°Y % log(k(R-X)) - (1/2)) + tg2al-cosa(RY™' + XY )

2 -1

- (1/2)cosza(R2Y— + RXY—Z)] + (1/2)1log(k(R=-X)) + cosgla XY

¢ B%Y% 4 cos'a RY™! + RXY7? - sina cos”%a log(k|U|) + 0(Aa)]}

............................................................
................................

..................
..................................



- (1/72) {x°Y"%108(k(R-X)) - (1/2) + (1/2)10g(k(R-X))

+ (1/2)R?Y™2 + (1/2)RXY"?} - sina cos”2a log(k|U|) + 0(Aa)}
but (1/2)R2Y 2 = (1/2) + (1/2)x%Y"2.
Therefore,

2

Q, = (1/2){1og(k(R-X))(X2Y™2 « (1/2)) + (1/2)RXY "% + £(a)}

1

With these expressions the limiting process in 123.. can be carried

out.
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Figure 1.

Half-wing with
trapezoidal elements.
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Figure 2.

Half-wing with

triangular elements.
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Figure 3. Triangular elements with lines of the wake
along which singularities occur. (Along
line AB of Figure 3a there 1s a singularity
as (y-n)~1l, along all other lines as
log|y-n]|.)
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Figure 6. Wing with no parallel leading and trailing
edges, and the same kind of elements as in
Figure 5. Exceptional elements appear at
the traillng edge.
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Figure 13. Map of a triangular element from the &,n
plans to a p,a plane, if the point E-x’= 0
n-y = 0 lies inside the element. ’ ’
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